How do you graph \[y = \sin 2x\]?
Answer
Verified
444k+ views
Hint: We need to graph the given function. We will use the domain and some values of \[x\] lying between \[ - \pi \] and \[\pi \] to find some values of \[y\]. Then, we will use the values of \[y\] to find the coordinates of points lying on the required graph, and use the coordinates obtained to graph the function.
Complete step-by-step solution:
The domain of all sine functions is the set of all real numbers.
Thus, the domain of the function \[y = \sin 2x\] is given by \[\left\{ {x:x \in R} \right\}\]. This means that the function \[y = \sin 2x\] exists for all values of \[x\], and is a continuous function.
Now, we will find some values of \[y\] for some values of \[x\] lying between \[ - \pi \] and \[\pi \].
Substituting \[x = - \pi \] in the function \[y = \sin 2x\], we get
\[\begin{array}{l}y = \sin \left( {2\left( { - \pi } \right)} \right)\\ \Rightarrow y = \sin \left( { - 2\pi } \right)\end{array}\]
The sine of an angle \[ - x\] can be written as \[\sin \left( { - x} \right) = - \sin x\].
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow y = - \sin \left( {2\pi } \right)\\ \Rightarrow y = 0\end{array}\]
Substituting \[x = - \dfrac{{3\pi }}{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{{3\pi }}{4}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \dfrac{{3\pi }}{2}} \right)\end{array}\]
As sine function is an odd function, so we can writ above equation as
\[ \Rightarrow y = - \sin \left( {\dfrac{{3\pi }}{2}} \right)\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 1\]
Substituting \[x = - \dfrac{\pi }{2}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{2}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \pi } \right)\end{array}\]
As sine function is an odd function, so we can writ above equation as
\[\begin{array}{l} \Rightarrow y = - \sin \left( \pi \right)\\ \Rightarrow y = 0\end{array}\]
Substituting \[x = - \dfrac{\pi }{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{4}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \dfrac{\pi }{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = - 1\]
Substituting \[x = 0\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( 0 \right)} \right)\\ \Rightarrow y = \sin \left( 0 \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Substituting \[x = \dfrac{\pi }{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{4}} \right)} \right)\\ \Rightarrow y = \sin \left( {\dfrac{\pi }{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 1\]
Substituting \[x = \dfrac{\pi }{2}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{2}} \right)} \right)\\ \Rightarrow y = \sin \left( \pi \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Substituting \[x = \dfrac{{3\pi }}{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{{3\pi }}{4}} \right)} \right)\\ \Rightarrow y = \sin \left( {\dfrac{{3\pi }}{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = - 1\]
Substituting \[x = \pi \] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( \pi \right)} \right)\\ \Rightarrow y = \sin \left( {2\pi } \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Arranging the values of \[x\] and \[y\] in a table and writing the coordinates, we get
Now, we will use the coordinates of the points to plot the required graph.
Plotting the graphs and joining the curve, we get
This is the required graph of the function \[y = \sin 2x\].
Note:
The period of a function \[y = \sin kx\] is given by \[\dfrac{{2\pi }}{k}\]. The period of the function \[y = \sin 2x\] is \[\dfrac{{2\pi }}{2} = \pi \]. This means that the graph of \[y = \sin 2x\] will repeat for every \[\pi \] distance on the \[x\]-axis. It can be observed that the pattern and shape of the graph of \[y = \sin 2x\] is the same from \[ - \pi \] to 0, and from 0 to \[\pi \]. The range of the sine function is from \[ - 1\] to 1.
Complete step-by-step solution:
The domain of all sine functions is the set of all real numbers.
Thus, the domain of the function \[y = \sin 2x\] is given by \[\left\{ {x:x \in R} \right\}\]. This means that the function \[y = \sin 2x\] exists for all values of \[x\], and is a continuous function.
Now, we will find some values of \[y\] for some values of \[x\] lying between \[ - \pi \] and \[\pi \].
Substituting \[x = - \pi \] in the function \[y = \sin 2x\], we get
\[\begin{array}{l}y = \sin \left( {2\left( { - \pi } \right)} \right)\\ \Rightarrow y = \sin \left( { - 2\pi } \right)\end{array}\]
The sine of an angle \[ - x\] can be written as \[\sin \left( { - x} \right) = - \sin x\].
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow y = - \sin \left( {2\pi } \right)\\ \Rightarrow y = 0\end{array}\]
Substituting \[x = - \dfrac{{3\pi }}{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{{3\pi }}{4}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \dfrac{{3\pi }}{2}} \right)\end{array}\]
As sine function is an odd function, so we can writ above equation as
\[ \Rightarrow y = - \sin \left( {\dfrac{{3\pi }}{2}} \right)\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 1\]
Substituting \[x = - \dfrac{\pi }{2}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{2}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \pi } \right)\end{array}\]
As sine function is an odd function, so we can writ above equation as
\[\begin{array}{l} \Rightarrow y = - \sin \left( \pi \right)\\ \Rightarrow y = 0\end{array}\]
Substituting \[x = - \dfrac{\pi }{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{4}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \dfrac{\pi }{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = - 1\]
Substituting \[x = 0\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( 0 \right)} \right)\\ \Rightarrow y = \sin \left( 0 \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Substituting \[x = \dfrac{\pi }{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{4}} \right)} \right)\\ \Rightarrow y = \sin \left( {\dfrac{\pi }{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 1\]
Substituting \[x = \dfrac{\pi }{2}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{2}} \right)} \right)\\ \Rightarrow y = \sin \left( \pi \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Substituting \[x = \dfrac{{3\pi }}{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{{3\pi }}{4}} \right)} \right)\\ \Rightarrow y = \sin \left( {\dfrac{{3\pi }}{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = - 1\]
Substituting \[x = \pi \] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( \pi \right)} \right)\\ \Rightarrow y = \sin \left( {2\pi } \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Arranging the values of \[x\] and \[y\] in a table and writing the coordinates, we get
\[x\] | \[y\] | \[\left( {x,y} \right)\] |
\[ - \pi \] | \[0\] | \[\left( { - \pi ,0} \right)\] |
\[ - \dfrac{{3\pi }}{4}\] | \[1\] | \[\left( { - \dfrac{{3\pi }}{4},1} \right)\] |
\[ - \dfrac{\pi }{2}\] | \[0\] | \[\left( { - \dfrac{\pi }{2},0} \right)\] |
\[ - \dfrac{\pi }{4}\] | \[ - 1\] | \[\left( { - \dfrac{\pi }{4}, - 1} \right)\] |
\[0\] | \[0\] | \[\left( {0,0} \right)\] |
\[\dfrac{\pi }{4}\] | \[1\] | \[\left( {\dfrac{\pi }{4},1} \right)\] |
\[\dfrac{\pi }{2}\] | \[0\] | \[\left( {\dfrac{\pi }{2},0} \right)\] |
\[\dfrac{{3\pi }}{4}\] | \[ - 1\] | \[\left( {\dfrac{{3\pi }}{4}, - 1} \right)\] |
\[\pi \] | \[0\] | \[\left( {\pi ,0} \right)\] |
Now, we will use the coordinates of the points to plot the required graph.
Plotting the graphs and joining the curve, we get
This is the required graph of the function \[y = \sin 2x\].
Note:
The period of a function \[y = \sin kx\] is given by \[\dfrac{{2\pi }}{k}\]. The period of the function \[y = \sin 2x\] is \[\dfrac{{2\pi }}{2} = \pi \]. This means that the graph of \[y = \sin 2x\] will repeat for every \[\pi \] distance on the \[x\]-axis. It can be observed that the pattern and shape of the graph of \[y = \sin 2x\] is the same from \[ - \pi \] to 0, and from 0 to \[\pi \]. The range of the sine function is from \[ - 1\] to 1.
Recently Updated Pages
One difference between a Formal Letter and an informal class null english null
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
What is the specific heat capacity of ice water and class 11 physics CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light