Answer
Verified
434.4k+ views
Hint: We need to graph the given function. We will use the domain and some values of \[x\] lying between \[ - \pi \] and \[\pi \] to find some values of \[y\]. Then, we will use the values of \[y\] to find the coordinates of points lying on the required graph, and use the coordinates obtained to graph the function.
Complete step-by-step solution:
The domain of all sine functions is the set of all real numbers.
Thus, the domain of the function \[y = \sin 2x\] is given by \[\left\{ {x:x \in R} \right\}\]. This means that the function \[y = \sin 2x\] exists for all values of \[x\], and is a continuous function.
Now, we will find some values of \[y\] for some values of \[x\] lying between \[ - \pi \] and \[\pi \].
Substituting \[x = - \pi \] in the function \[y = \sin 2x\], we get
\[\begin{array}{l}y = \sin \left( {2\left( { - \pi } \right)} \right)\\ \Rightarrow y = \sin \left( { - 2\pi } \right)\end{array}\]
The sine of an angle \[ - x\] can be written as \[\sin \left( { - x} \right) = - \sin x\].
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow y = - \sin \left( {2\pi } \right)\\ \Rightarrow y = 0\end{array}\]
Substituting \[x = - \dfrac{{3\pi }}{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{{3\pi }}{4}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \dfrac{{3\pi }}{2}} \right)\end{array}\]
As sine function is an odd function, so we can writ above equation as
\[ \Rightarrow y = - \sin \left( {\dfrac{{3\pi }}{2}} \right)\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 1\]
Substituting \[x = - \dfrac{\pi }{2}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{2}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \pi } \right)\end{array}\]
As sine function is an odd function, so we can writ above equation as
\[\begin{array}{l} \Rightarrow y = - \sin \left( \pi \right)\\ \Rightarrow y = 0\end{array}\]
Substituting \[x = - \dfrac{\pi }{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{4}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \dfrac{\pi }{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = - 1\]
Substituting \[x = 0\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( 0 \right)} \right)\\ \Rightarrow y = \sin \left( 0 \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Substituting \[x = \dfrac{\pi }{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{4}} \right)} \right)\\ \Rightarrow y = \sin \left( {\dfrac{\pi }{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 1\]
Substituting \[x = \dfrac{\pi }{2}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{2}} \right)} \right)\\ \Rightarrow y = \sin \left( \pi \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Substituting \[x = \dfrac{{3\pi }}{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{{3\pi }}{4}} \right)} \right)\\ \Rightarrow y = \sin \left( {\dfrac{{3\pi }}{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = - 1\]
Substituting \[x = \pi \] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( \pi \right)} \right)\\ \Rightarrow y = \sin \left( {2\pi } \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Arranging the values of \[x\] and \[y\] in a table and writing the coordinates, we get
Now, we will use the coordinates of the points to plot the required graph.
Plotting the graphs and joining the curve, we get
This is the required graph of the function \[y = \sin 2x\].
Note:
The period of a function \[y = \sin kx\] is given by \[\dfrac{{2\pi }}{k}\]. The period of the function \[y = \sin 2x\] is \[\dfrac{{2\pi }}{2} = \pi \]. This means that the graph of \[y = \sin 2x\] will repeat for every \[\pi \] distance on the \[x\]-axis. It can be observed that the pattern and shape of the graph of \[y = \sin 2x\] is the same from \[ - \pi \] to 0, and from 0 to \[\pi \]. The range of the sine function is from \[ - 1\] to 1.
Complete step-by-step solution:
The domain of all sine functions is the set of all real numbers.
Thus, the domain of the function \[y = \sin 2x\] is given by \[\left\{ {x:x \in R} \right\}\]. This means that the function \[y = \sin 2x\] exists for all values of \[x\], and is a continuous function.
Now, we will find some values of \[y\] for some values of \[x\] lying between \[ - \pi \] and \[\pi \].
Substituting \[x = - \pi \] in the function \[y = \sin 2x\], we get
\[\begin{array}{l}y = \sin \left( {2\left( { - \pi } \right)} \right)\\ \Rightarrow y = \sin \left( { - 2\pi } \right)\end{array}\]
The sine of an angle \[ - x\] can be written as \[\sin \left( { - x} \right) = - \sin x\].
Simplifying the expression, we get
\[\begin{array}{l} \Rightarrow y = - \sin \left( {2\pi } \right)\\ \Rightarrow y = 0\end{array}\]
Substituting \[x = - \dfrac{{3\pi }}{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{{3\pi }}{4}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \dfrac{{3\pi }}{2}} \right)\end{array}\]
As sine function is an odd function, so we can writ above equation as
\[ \Rightarrow y = - \sin \left( {\dfrac{{3\pi }}{2}} \right)\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 1\]
Substituting \[x = - \dfrac{\pi }{2}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{2}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \pi } \right)\end{array}\]
As sine function is an odd function, so we can writ above equation as
\[\begin{array}{l} \Rightarrow y = - \sin \left( \pi \right)\\ \Rightarrow y = 0\end{array}\]
Substituting \[x = - \dfrac{\pi }{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( { - \dfrac{\pi }{4}} \right)} \right)\\ \Rightarrow y = \sin \left( { - \dfrac{\pi }{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = - 1\]
Substituting \[x = 0\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( 0 \right)} \right)\\ \Rightarrow y = \sin \left( 0 \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Substituting \[x = \dfrac{\pi }{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{4}} \right)} \right)\\ \Rightarrow y = \sin \left( {\dfrac{\pi }{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 1\]
Substituting \[x = \dfrac{\pi }{2}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{\pi }{2}} \right)} \right)\\ \Rightarrow y = \sin \left( \pi \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Substituting \[x = \dfrac{{3\pi }}{4}\] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( {\dfrac{{3\pi }}{4}} \right)} \right)\\ \Rightarrow y = \sin \left( {\dfrac{{3\pi }}{2}} \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = - 1\]
Substituting \[x = \pi \] in the function \[y = \sin 2x\], we get
\[\begin{array}{l} \Rightarrow y = \sin \left( {2\left( \pi \right)} \right)\\ \Rightarrow y = \sin \left( {2\pi } \right)\end{array}\]
Substituting the value of the angle, we get
\[ \Rightarrow y = 0\]
Arranging the values of \[x\] and \[y\] in a table and writing the coordinates, we get
\[x\] | \[y\] | \[\left( {x,y} \right)\] |
\[ - \pi \] | \[0\] | \[\left( { - \pi ,0} \right)\] |
\[ - \dfrac{{3\pi }}{4}\] | \[1\] | \[\left( { - \dfrac{{3\pi }}{4},1} \right)\] |
\[ - \dfrac{\pi }{2}\] | \[0\] | \[\left( { - \dfrac{\pi }{2},0} \right)\] |
\[ - \dfrac{\pi }{4}\] | \[ - 1\] | \[\left( { - \dfrac{\pi }{4}, - 1} \right)\] |
\[0\] | \[0\] | \[\left( {0,0} \right)\] |
\[\dfrac{\pi }{4}\] | \[1\] | \[\left( {\dfrac{\pi }{4},1} \right)\] |
\[\dfrac{\pi }{2}\] | \[0\] | \[\left( {\dfrac{\pi }{2},0} \right)\] |
\[\dfrac{{3\pi }}{4}\] | \[ - 1\] | \[\left( {\dfrac{{3\pi }}{4}, - 1} \right)\] |
\[\pi \] | \[0\] | \[\left( {\pi ,0} \right)\] |
Now, we will use the coordinates of the points to plot the required graph.
Plotting the graphs and joining the curve, we get
This is the required graph of the function \[y = \sin 2x\].
Note:
The period of a function \[y = \sin kx\] is given by \[\dfrac{{2\pi }}{k}\]. The period of the function \[y = \sin 2x\] is \[\dfrac{{2\pi }}{2} = \pi \]. This means that the graph of \[y = \sin 2x\] will repeat for every \[\pi \] distance on the \[x\]-axis. It can be observed that the pattern and shape of the graph of \[y = \sin 2x\] is the same from \[ - \pi \] to 0, and from 0 to \[\pi \]. The range of the sine function is from \[ - 1\] to 1.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE