
How do you graph $y=3x+5$?
Answer
552.6k+ views
Hint: The above given equation is the equation of a straight line because the power of variables is $1$. This equation of straight line can be compared with the general equation $y=mx+c$. Here, $m$ is a slope of line and $c$ is called as $y-$intercept for this particular equation.
Complete step by step solution:It is given in the question that $y=3x+5$ comparing the above equation with slope – intercept of equation i.e.$y=mx+c$
Therefore, the slope $m=3$ and $y-$intercept of equation $(c)=5$
For drawing the graph of the above equation we need any two points.
Therefore, selecting any two random values of $x$ and we will find corresponding value of $y$
For equation $y=3x+5$
For
$x=0$
$y=3\times 0+5$
$y=5$
First point is \[\left( 0,5 \right)\]
For
$x=1$
$y=3\times 1+5$
$y=8$
Second point is \[\left( 1,8 \right)\]
Drawing table for \[x\] and \[y\]
The above graph is the graph at equation $y=3x+5$
Here, the straight line which we have got is a never ending line .If you provide values it will move up to infinity in positive as well as in negative direction.
Additional Information:
For the equation similar to \[y=mx+c\] there are a number of ways other than conventional ways of drawing graphs.
For example: \[y=2x+5\]
Here, the y – intercept \[(c)=5\] and slope \[m=2\]
Therefore slope \[m\] is also \[\tan \theta \]
\[\therefore \tan \theta =2\]
\[\theta ={{\tan }^{-1}}(2)\]
\[\theta =63.43\]
Taking point \[5\] on \[y\] - axis and calculating angle \[63.43\] from \[x\] - axis and drawing a straight line we will get the graph.
You can also convert this equation in point slope form to equation.
\[y=3x+5\]
\[y-5=3(x-0)\]
Comparing it with point slope form of equation
\[y-{{y}_{1}}=m(x-{{x}_{1}})\]
Point \[({{x}_{1}},{{y}_{1}})\equiv (0,5)\] and slope \[m=3\]
Note:
When drawing a graph, take the values properly on the right axis and do not misplace the values of \[x\] and \[y\] - axis.
In solution you can take any random values for \[x\] to find \[y\] but make sure to take \[x=0\] because if it is not taken that there is no point of finding \[y\] - intercept for the question.
Join the points properly and with the help of scale do not join the point free handed as it is a straight line equation.
Complete step by step solution:It is given in the question that $y=3x+5$ comparing the above equation with slope – intercept of equation i.e.$y=mx+c$
Therefore, the slope $m=3$ and $y-$intercept of equation $(c)=5$
For drawing the graph of the above equation we need any two points.
Therefore, selecting any two random values of $x$ and we will find corresponding value of $y$
For equation $y=3x+5$
For
$x=0$
$y=3\times 0+5$
$y=5$
First point is \[\left( 0,5 \right)\]
For
$x=1$
$y=3\times 1+5$
$y=8$
Second point is \[\left( 1,8 \right)\]
Drawing table for \[x\] and \[y\]
| $x$ | $0$ | $1$ |
| $y$ | $5$ | $8$ |
The above graph is the graph at equation $y=3x+5$
Here, the straight line which we have got is a never ending line .If you provide values it will move up to infinity in positive as well as in negative direction.
Additional Information:
For the equation similar to \[y=mx+c\] there are a number of ways other than conventional ways of drawing graphs.
For example: \[y=2x+5\]
Here, the y – intercept \[(c)=5\] and slope \[m=2\]
Therefore slope \[m\] is also \[\tan \theta \]
\[\therefore \tan \theta =2\]
\[\theta ={{\tan }^{-1}}(2)\]
\[\theta =63.43\]
Taking point \[5\] on \[y\] - axis and calculating angle \[63.43\] from \[x\] - axis and drawing a straight line we will get the graph.
You can also convert this equation in point slope form to equation.
\[y=3x+5\]
\[y-5=3(x-0)\]
Comparing it with point slope form of equation
\[y-{{y}_{1}}=m(x-{{x}_{1}})\]
Point \[({{x}_{1}},{{y}_{1}})\equiv (0,5)\] and slope \[m=3\]
Note:
When drawing a graph, take the values properly on the right axis and do not misplace the values of \[x\] and \[y\] - axis.
In solution you can take any random values for \[x\] to find \[y\] but make sure to take \[x=0\] because if it is not taken that there is no point of finding \[y\] - intercept for the question.
Join the points properly and with the help of scale do not join the point free handed as it is a straight line equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

