How do you graph $y=\ln x-1$?
Answer
Verified
438.6k+ views
Hint: We first try to plot the graph for $y=\ln x$. Then we find the graph for $y=\ln x-1$ by lowering the graph line of $y=\ln x$ by 1 unit. The lowering or ascending of the graph is totally dependent on the use of the constant 1 in the equation of $y=\ln x-1$.
Complete step-by-step solution:
We need to plot the graph of $y=\ln x-1$.
The usual common graph which is easier to plot on the graph is $y=\ln x$.
The graph is an increasing graph with range being $\left( -\infty ,\infty \right)$.
The domain for the graph $y=\ln x$ is $\left( 0,\infty \right)$.
Now depending on the above-mentioned graph, we are going to find the graph of $y=\ln x-1$
The change between $y=\ln x$ and $y=\ln x-1$ is that for a particular value of $x$, we are going to find the value of $y$ being 1 less than the previous value for $y=\ln x$.
This means that we are going to lower the graph with respect to the previous graph line which is for $y=\ln x$ at the time of changing the graph from $y=\ln x$ to $y=\ln x-1$.
The domain for the graph $y=\ln x-1$ is $\left( 0,\infty \right)$.
The range for the graph $y=\ln x-1$ is $\left( -\infty ,\infty \right)$.
Note: We need to be careful about the change from $y=\ln x$ to $y=\ln x-1$. The lowering or ascending of the graph is dependent on the constant value that is being added. If the value is positive then graph ascends and if the value is negative then it descends.
Complete step-by-step solution:
We need to plot the graph of $y=\ln x-1$.
The usual common graph which is easier to plot on the graph is $y=\ln x$.
The graph is an increasing graph with range being $\left( -\infty ,\infty \right)$.
The domain for the graph $y=\ln x$ is $\left( 0,\infty \right)$.
Now depending on the above-mentioned graph, we are going to find the graph of $y=\ln x-1$
The change between $y=\ln x$ and $y=\ln x-1$ is that for a particular value of $x$, we are going to find the value of $y$ being 1 less than the previous value for $y=\ln x$.
This means that we are going to lower the graph with respect to the previous graph line which is for $y=\ln x$ at the time of changing the graph from $y=\ln x$ to $y=\ln x-1$.
The domain for the graph $y=\ln x-1$ is $\left( 0,\infty \right)$.
The range for the graph $y=\ln x-1$ is $\left( -\infty ,\infty \right)$.
Note: We need to be careful about the change from $y=\ln x$ to $y=\ln x-1$. The lowering or ascending of the graph is dependent on the constant value that is being added. If the value is positive then graph ascends and if the value is negative then it descends.
Recently Updated Pages
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
What happens when entropy reaches maximum class 11 chemistry JEE_Main
Calculate the volume occupied by 88 gram of CO2 at class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE