Answer
Verified
431.7k+ views
Hint:The given question deals with basic simplification of trigonometric functions by using some of the simple trigonometric formulae such as $\tan x = \dfrac{{\sin x}}{{\cos x}}$ and $\sec x = \dfrac{1}{{\cos x}}$ . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem and proving the result given to us.
Complete step by step answer:
In the given problem, we have to prove a trigonometric identity that can be further used in many questions and problems as a direct result and has wide ranging applications. For proving the desired result, we need to first know the definitions of all the six trigonometric ratios.Now, we need to make the left and right sides of the equation equal.
L.H.S. $ = 1 + {\tan ^2}x$
As we know that \[\tan x = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)\]. So, we get,
\[1 + {\left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)^2}\]
\[\Rightarrow 1 + \dfrac{{{{\left( {{\text{Opposite Side}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
\[\dfrac{{{{\left( {{\text{Adjacent Side}}} \right)}^2} + {{\left( {{\text{Opposite Side}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
Using Pythagoras Theorem, we know,
\[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Opposite Side}}} \right)^2} + {\left( {{\text{Adjacent Side}}} \right)^2}\]
\[\Rightarrow\dfrac{{{{\left( {{\text{Hypotenuse}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
Now, we use the basic trigonometric formula \[\sec x = \dfrac{{\left( {{\text{Hypotenuse}}} \right)}}{{\left( {{\text{Adjacent Side}}} \right)}}\], so we have,
\[{\sec ^2}x = R.H.S.\]
As $ L.H.S=R.H.S$, hence the given identity proved.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Complete step by step answer:
In the given problem, we have to prove a trigonometric identity that can be further used in many questions and problems as a direct result and has wide ranging applications. For proving the desired result, we need to first know the definitions of all the six trigonometric ratios.Now, we need to make the left and right sides of the equation equal.
L.H.S. $ = 1 + {\tan ^2}x$
As we know that \[\tan x = \left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)\]. So, we get,
\[1 + {\left( {\dfrac{{{\text{Opposite Side}}}}{{{\text{Adjacent Side}}}}} \right)^2}\]
\[\Rightarrow 1 + \dfrac{{{{\left( {{\text{Opposite Side}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
\[\dfrac{{{{\left( {{\text{Adjacent Side}}} \right)}^2} + {{\left( {{\text{Opposite Side}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
Using Pythagoras Theorem, we know,
\[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Opposite Side}}} \right)^2} + {\left( {{\text{Adjacent Side}}} \right)^2}\]
\[\Rightarrow\dfrac{{{{\left( {{\text{Hypotenuse}}} \right)}^2}}}{{{{\left( {{\text{Adjacent Side}}} \right)}^2}}}\]
Now, we use the basic trigonometric formula \[\sec x = \dfrac{{\left( {{\text{Hypotenuse}}} \right)}}{{\left( {{\text{Adjacent Side}}} \right)}}\], so we have,
\[{\sec ^2}x = R.H.S.\]
As $ L.H.S=R.H.S$, hence the given identity proved.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart. Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE