How do you simplify $4\sqrt {\dfrac{{81}}{{16}}} $.
Answer
Verified
448.8k+ views
Hint: We will first write the numerator and denominator separately in the form of squares. Then cut it with square root and multiply with 4 and thus we have the answer.
Complete step-by-step answer:
We need to simplify $4\sqrt {\dfrac{{81}}{{16}}} $. ………………(1)
We know that ${4^2} = 4 \times 4 = 16$ and ${9^2} = 9 \times 9 = 81$.
Since, we have $\sqrt {\dfrac{{81}}{{16}}} $ in the given expression which we require to simplify.
We can write this expression as: $\sqrt {\dfrac{{81}}{{16}}} = \sqrt {\dfrac{{{9^2}}}{{{4^2}}}} $ ……………..(2)
Now, we will make use of the fact that: $\dfrac{{{a^2}}}{{{b^2}}} = {\left( {\dfrac{a}{b}} \right)^2}$
On replacing a by 9 and b by 4, we get the following expression:-
$ \Rightarrow \dfrac{{{9^2}}}{{{4^2}}} = {\left( {\dfrac{9}{4}} \right)^2}$
Putting the above expression in the equation number (2), we will then obtain the following equation:-
\[ \Rightarrow \sqrt {\dfrac{{81}}{{16}}} = \sqrt {{{\left( {\dfrac{9}{4}} \right)}^2}} \] …………………..(3)
We also know that $\sqrt {{a^2}} = a$
On replacing a by $\dfrac{9}{4}$ in the above equation, we will then get the following equation:-
$ \Rightarrow \sqrt {{{\left( {\dfrac{9}{4}} \right)}^2}} = \dfrac{9}{4}$
Putting the above equation in the equation number (3), we will then obtain the following expression:-
\[ \Rightarrow \sqrt {\dfrac{{81}}{{16}}} = \dfrac{9}{4}\]
Putting the expression above in equation number (1), we will then obtain the following expression:-
$ \Rightarrow 4\sqrt {\dfrac{{81}}{{16}}} = 4 \times \dfrac{9}{4}$
Cutting off 4 from right hand side in above expression to get the following expression with us:-
$ \Rightarrow 4\sqrt {\dfrac{{81}}{{16}}} = 9$
Hence, we have $4\sqrt {\dfrac{{81}}{{16}}} $ simplified as 9.
Note:
The students must note that when we cut off 4 in the last third step it is because we know that 4 is not equal to 0.
The students must also note that when we open up square root, we have two possibilities, either a > 0 or a < 0. In general if nothing is given to us, we generally assume that a > 0 and thus we have the required answer as 9, otherwise it could have been -9 as well.
The students must note that the small things we use in the solution, sometimes we forget that they have a concept behind them like: $\dfrac{{{a^2}}}{{{b^2}}} = {\left( {\dfrac{a}{b}} \right)^2}$ and $\sqrt {{a^2}} = a$.
Complete step-by-step answer:
We need to simplify $4\sqrt {\dfrac{{81}}{{16}}} $. ………………(1)
We know that ${4^2} = 4 \times 4 = 16$ and ${9^2} = 9 \times 9 = 81$.
Since, we have $\sqrt {\dfrac{{81}}{{16}}} $ in the given expression which we require to simplify.
We can write this expression as: $\sqrt {\dfrac{{81}}{{16}}} = \sqrt {\dfrac{{{9^2}}}{{{4^2}}}} $ ……………..(2)
Now, we will make use of the fact that: $\dfrac{{{a^2}}}{{{b^2}}} = {\left( {\dfrac{a}{b}} \right)^2}$
On replacing a by 9 and b by 4, we get the following expression:-
$ \Rightarrow \dfrac{{{9^2}}}{{{4^2}}} = {\left( {\dfrac{9}{4}} \right)^2}$
Putting the above expression in the equation number (2), we will then obtain the following equation:-
\[ \Rightarrow \sqrt {\dfrac{{81}}{{16}}} = \sqrt {{{\left( {\dfrac{9}{4}} \right)}^2}} \] …………………..(3)
We also know that $\sqrt {{a^2}} = a$
On replacing a by $\dfrac{9}{4}$ in the above equation, we will then get the following equation:-
$ \Rightarrow \sqrt {{{\left( {\dfrac{9}{4}} \right)}^2}} = \dfrac{9}{4}$
Putting the above equation in the equation number (3), we will then obtain the following expression:-
\[ \Rightarrow \sqrt {\dfrac{{81}}{{16}}} = \dfrac{9}{4}\]
Putting the expression above in equation number (1), we will then obtain the following expression:-
$ \Rightarrow 4\sqrt {\dfrac{{81}}{{16}}} = 4 \times \dfrac{9}{4}$
Cutting off 4 from right hand side in above expression to get the following expression with us:-
$ \Rightarrow 4\sqrt {\dfrac{{81}}{{16}}} = 9$
Hence, we have $4\sqrt {\dfrac{{81}}{{16}}} $ simplified as 9.
Note:
The students must note that when we cut off 4 in the last third step it is because we know that 4 is not equal to 0.
The students must also note that when we open up square root, we have two possibilities, either a > 0 or a < 0. In general if nothing is given to us, we generally assume that a > 0 and thus we have the required answer as 9, otherwise it could have been -9 as well.
The students must note that the small things we use in the solution, sometimes we forget that they have a concept behind them like: $\dfrac{{{a^2}}}{{{b^2}}} = {\left( {\dfrac{a}{b}} \right)^2}$ and $\sqrt {{a^2}} = a$.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
List out three methods of soil conservation
Complete the following word chain of verbs Write eat class 10 english CBSE
Compare and contrast a weekly market and a shopping class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
On the outline map of India mark the following appropriately class 10 social science. CBSE