Answer
Verified
428.7k+ views
Hint: Given question is from permutations and combinations. We have to find the value of .This can be solved directly by using the formula for permutations \[ (^nP_r) = \dfrac{{n!}}{{\left( {n - r} \right)!}}\] where n is the total number of whatever is being arranged or selected and r is the number of objects getting arranged or selected.
This is just to get an idea of different possible combinations. So let’s solve it!
Complete step-by-step answer:
Given that $^5P_2$
Using the formula
\[ (^nP_r) = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
\[ \Rightarrow (^5P_2) = \dfrac{{5!}}{{\left( {5 - 2} \right)!}}\]
On soling we get,
\[ \Rightarrow (^5P_2) = \dfrac{{5!}}{{3!}}\]
Now let’s write the values of factorials there,
\[ \Rightarrow (^5P_2) = \dfrac{{120}}{6}\]
On dividing we get,
\[ \Rightarrow (^5P_2) = 20\]
This is our answer.
So, the correct answer is “20”.
Note: Permutations mainly involve the possible number of arrangements of r objects chosen from n different objects. Factorial is the product of numbers below that number upto 1. For example here \[5! = 5 \times 4 \times 3 \times 2 \times 1 = 120\] . Starting from that number and taking all numbers below it upto 1.
Note that \[{\text{n}}{{\text{P}}_1} = n\] and \[{\text{n}}{{\text{P}}_n} = n!\] because \[0! = 1\]
This is just to get an idea of different possible combinations. So let’s solve it!
Complete step-by-step answer:
Given that $^5P_2$
Using the formula
\[ (^nP_r) = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
\[ \Rightarrow (^5P_2) = \dfrac{{5!}}{{\left( {5 - 2} \right)!}}\]
On soling we get,
\[ \Rightarrow (^5P_2) = \dfrac{{5!}}{{3!}}\]
Now let’s write the values of factorials there,
\[ \Rightarrow (^5P_2) = \dfrac{{120}}{6}\]
On dividing we get,
\[ \Rightarrow (^5P_2) = 20\]
This is our answer.
So, the correct answer is “20”.
Note: Permutations mainly involve the possible number of arrangements of r objects chosen from n different objects. Factorial is the product of numbers below that number upto 1. For example here \[5! = 5 \times 4 \times 3 \times 2 \times 1 = 120\] . Starting from that number and taking all numbers below it upto 1.
Note that \[{\text{n}}{{\text{P}}_1} = n\] and \[{\text{n}}{{\text{P}}_n} = n!\] because \[0! = 1\]
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE