Answer
Verified
431.4k+ views
Hint: These types of problems are pretty straight forward and are very easy to solve. We need to have a fair knowledge of complex numbers and the different equations and formulae that involves it. The general form of a complex number is \[a+ib\] , where the first part is the real term and the second term is the complex part. Here \[i\] represents iorta and is defined as,
\[\begin{align}
& i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
The easiest way to solve the given problem is to do rationalization of the denominator and then to separate the real and imaginary terms.
Complete step by step answer:
Now we start off with the solution of the given problem as,
We first rationalize the denominator by multiplying the numerator and denominator by the conjugate complex number of the denominator. We now rewrite the given problem as,
\[\begin{align}
& \dfrac{10+i}{4-i} \\
& \Rightarrow \dfrac{\left( 10+i \right)\left( 4+i \right)}{\left( 4-i \right)\left( 4+i \right)} \\
\end{align}\]
We now do multiplication of the complex numbers to get,
\[\Rightarrow \dfrac{40+10i+4i+{{i}^{2}}}{16-{{i}^{2}}}\]
Now, using the relation \[{{i}^{2}}=-1\] we write,
\[\begin{align}
& \Rightarrow \dfrac{40+10i+4i+\left( -1 \right)}{16-\left( -1 \right)} \\
& \Rightarrow \dfrac{40+10i+4i-1}{16+1} \\
& \Rightarrow \dfrac{39+14i}{17} \\
\end{align}\]
Now, we separate the real and imaginary parts of the formed equation, to get the perfect solution, hence we write,
\[\dfrac{39}{17}+\dfrac{14}{17}i\]
Thus the answer to our problem is \[\dfrac{39}{17}+\dfrac{14}{17}i\].
Note: For these type of problems, we need to remember and keep in mind of the general form of complex numbers. The given problem is solved by a simple rationalization of the denominator, followed by simple multiplication of two complex numbers and replacing the relation \[{{i}^{2}}=-1\] . In rationalization, what we do is multiply both the numerator and denominator by the conjugate of the denominator. After all these things we separate the real part and imaginary part and write the hence formed answer.
\[\begin{align}
& i=\sqrt{-1} \\
& \Rightarrow {{i}^{2}}=-1 \\
\end{align}\]
The easiest way to solve the given problem is to do rationalization of the denominator and then to separate the real and imaginary terms.
Complete step by step answer:
Now we start off with the solution of the given problem as,
We first rationalize the denominator by multiplying the numerator and denominator by the conjugate complex number of the denominator. We now rewrite the given problem as,
\[\begin{align}
& \dfrac{10+i}{4-i} \\
& \Rightarrow \dfrac{\left( 10+i \right)\left( 4+i \right)}{\left( 4-i \right)\left( 4+i \right)} \\
\end{align}\]
We now do multiplication of the complex numbers to get,
\[\Rightarrow \dfrac{40+10i+4i+{{i}^{2}}}{16-{{i}^{2}}}\]
Now, using the relation \[{{i}^{2}}=-1\] we write,
\[\begin{align}
& \Rightarrow \dfrac{40+10i+4i+\left( -1 \right)}{16-\left( -1 \right)} \\
& \Rightarrow \dfrac{40+10i+4i-1}{16+1} \\
& \Rightarrow \dfrac{39+14i}{17} \\
\end{align}\]
Now, we separate the real and imaginary parts of the formed equation, to get the perfect solution, hence we write,
\[\dfrac{39}{17}+\dfrac{14}{17}i\]
Thus the answer to our problem is \[\dfrac{39}{17}+\dfrac{14}{17}i\].
Note: For these type of problems, we need to remember and keep in mind of the general form of complex numbers. The given problem is solved by a simple rationalization of the denominator, followed by simple multiplication of two complex numbers and replacing the relation \[{{i}^{2}}=-1\] . In rationalization, what we do is multiply both the numerator and denominator by the conjugate of the denominator. After all these things we separate the real part and imaginary part and write the hence formed answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE