Answer
Verified
431.1k+ views
Hint: We are given a term as $\dfrac{1}{(1+i)}$ . We are asked to simplify it, we can see clearly. We can read it as $1$ is being divided by $1+i$, so we will learn about how the compared number can being divided, we will learn what we conjugate, how do we find them, we will work on some examples to get a grip, then we will solve $\dfrac{1}{(1+i)}$ by multiplying it by its conjugate and then simplifying it.
Complete step-by-step solution:
We are given a fraction as $\dfrac{1}{(1+i)}$. We can read them as $1$ is being divided by $1+i$. So, we will learn how to divide the number in complex form. To divide the number in complex form we will follow the following steps.
Step: 1 Firstly we find the conjugate of the denominator.
Step: 2 We will multiply numerator and denominator of the given fraction with the conjugate of the denominator.
Step: 3 We will then distribute the term mean. We will produce the term in numerator as well as in denominator.
Step: 4 We will simplify the power of $i$ always, remember that ${{i}^{2}}$ is given as $-1$
Step: 5 We will then combine the like terms that mean we will total infinity terms with each other and only constant with each other.
Step: 6 we will simplify our answer lastly in standard complex form. We will learn better by one example say we have $\dfrac{3+2i}{4+2i}$
We have numerator $3+2i$ and denominator as $4+2i$
So Step: 1 we will find conjugate of $4+2i$, simply the conjugate of $a+ib$ is $a-ib$ hence conjugate of $4+2i$
$\begin{align}
& =4-(-2i) \\
& =4+2i \\
\end{align}$
Step: 2 We will multiply numerator and denominator by $4+2i$
$\Rightarrow \dfrac{3+2i}{(4-2i)}\times \dfrac{(4+2i)}{4+2i}$
Step: 3 We will multiply them in the numerator as well as in denominator
$\Rightarrow \dfrac{3+2i}{(4-2i)}\times \dfrac{(4+2i)}{4+2i}=\dfrac{12+4{{i}^{2}}+6i+8i}{16-4{{i}^{2}}+8i-8i}$
Step: 4 We simplify I we use ${{i}^{2}}=-1$
$\Rightarrow \dfrac{12-4+6i+8i}{16-(-4)+8i-8i}$
Now we combine like term and simplify
$\begin{align}
& =\dfrac{8+14i}{20} \\
& \Rightarrow 12-4=8,\,\,6i+8i=14\,\,and\,\,\,-8i+8i=0 \\
\end{align}$
Now we will reduce above form into the standard form
$\begin{align}
& =\dfrac{8+14i}{20} \\
& =\dfrac{8}{20}+\dfrac{14i}{20} \\
\end{align}$
We will reduce the term a bit.
$=\dfrac{2}{5}+\dfrac{7}{10}i$
Here we get
$\begin{align}
& \dfrac{3+2i}{4-2i} \\
& =\dfrac{2}{5}+\dfrac{2i}{10} \\
\end{align}$
This is how we divide the terms in the complex number.
Now we write on our problem, we have $\dfrac{1}{(1+i)}$ conjugate of $1+i$ is $1-i$
So, we multiply numerator and denominator by $1-i$
$\dfrac{1}{(1+i)}=\dfrac{1}{1+i}\times \dfrac{1-i}{1-i}$
Simplifying by multiple we get
$\Rightarrow \dfrac{1-i}{1-i+i-{{i}^{2}}}$
Simplifying we get,
${{i}^{2}}=-1$
So, we get,
$\Rightarrow \dfrac{1-i}{1-i+i+1}$
Now we add the like term and simplify and we get
$=\dfrac{1-i}{2}$
Now we write it to standard form
$=\dfrac{1}{2}-\dfrac{i}{2}$
So, we get $\dfrac{1}{(1+i)}$ in answer as $=\dfrac{1}{2}-\dfrac{i}{2}$ into its simple form.
Note: When we have a complex term remember we cannot add the first constant with the total term. First, we cannot add variables with constant i.e. \[x+2=2x\] in many similar ways $2i+2=4i$ is wrong. We can always add like terms, we do addition after simplification of another power I.e after changing ${{i}^{2}}=-1$ we need to be careful with calculation.
Complete step-by-step solution:
We are given a fraction as $\dfrac{1}{(1+i)}$. We can read them as $1$ is being divided by $1+i$. So, we will learn how to divide the number in complex form. To divide the number in complex form we will follow the following steps.
Step: 1 Firstly we find the conjugate of the denominator.
Step: 2 We will multiply numerator and denominator of the given fraction with the conjugate of the denominator.
Step: 3 We will then distribute the term mean. We will produce the term in numerator as well as in denominator.
Step: 4 We will simplify the power of $i$ always, remember that ${{i}^{2}}$ is given as $-1$
Step: 5 We will then combine the like terms that mean we will total infinity terms with each other and only constant with each other.
Step: 6 we will simplify our answer lastly in standard complex form. We will learn better by one example say we have $\dfrac{3+2i}{4+2i}$
We have numerator $3+2i$ and denominator as $4+2i$
So Step: 1 we will find conjugate of $4+2i$, simply the conjugate of $a+ib$ is $a-ib$ hence conjugate of $4+2i$
$\begin{align}
& =4-(-2i) \\
& =4+2i \\
\end{align}$
Step: 2 We will multiply numerator and denominator by $4+2i$
$\Rightarrow \dfrac{3+2i}{(4-2i)}\times \dfrac{(4+2i)}{4+2i}$
Step: 3 We will multiply them in the numerator as well as in denominator
$\Rightarrow \dfrac{3+2i}{(4-2i)}\times \dfrac{(4+2i)}{4+2i}=\dfrac{12+4{{i}^{2}}+6i+8i}{16-4{{i}^{2}}+8i-8i}$
Step: 4 We simplify I we use ${{i}^{2}}=-1$
$\Rightarrow \dfrac{12-4+6i+8i}{16-(-4)+8i-8i}$
Now we combine like term and simplify
$\begin{align}
& =\dfrac{8+14i}{20} \\
& \Rightarrow 12-4=8,\,\,6i+8i=14\,\,and\,\,\,-8i+8i=0 \\
\end{align}$
Now we will reduce above form into the standard form
$\begin{align}
& =\dfrac{8+14i}{20} \\
& =\dfrac{8}{20}+\dfrac{14i}{20} \\
\end{align}$
We will reduce the term a bit.
$=\dfrac{2}{5}+\dfrac{7}{10}i$
Here we get
$\begin{align}
& \dfrac{3+2i}{4-2i} \\
& =\dfrac{2}{5}+\dfrac{2i}{10} \\
\end{align}$
This is how we divide the terms in the complex number.
Now we write on our problem, we have $\dfrac{1}{(1+i)}$ conjugate of $1+i$ is $1-i$
So, we multiply numerator and denominator by $1-i$
$\dfrac{1}{(1+i)}=\dfrac{1}{1+i}\times \dfrac{1-i}{1-i}$
Simplifying by multiple we get
$\Rightarrow \dfrac{1-i}{1-i+i-{{i}^{2}}}$
Simplifying we get,
${{i}^{2}}=-1$
So, we get,
$\Rightarrow \dfrac{1-i}{1-i+i+1}$
Now we add the like term and simplify and we get
$=\dfrac{1-i}{2}$
Now we write it to standard form
$=\dfrac{1}{2}-\dfrac{i}{2}$
So, we get $\dfrac{1}{(1+i)}$ in answer as $=\dfrac{1}{2}-\dfrac{i}{2}$ into its simple form.
Note: When we have a complex term remember we cannot add the first constant with the total term. First, we cannot add variables with constant i.e. \[x+2=2x\] in many similar ways $2i+2=4i$ is wrong. We can always add like terms, we do addition after simplification of another power I.e after changing ${{i}^{2}}=-1$ we need to be careful with calculation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE