Answer
Verified
429.9k+ views
Hint: First, move the constant part on one side. After that take log on both sides and apply the property of the log, $\log {a^b} = b\log a$. Then change the decimal value in the fraction part. Then, apply the property of log, $\log \dfrac{a}{b} = \log a - \log b$. After that, divide both sides by the coefficients of $x$ to get the desired result.
Complete step by step solution:
Let us understand the definition of log first.
Logarithms are the opposite of exponentials, just as the opposite of addition is subtraction and the opposite of multiplication is division.
In other words, a logarithm is essentially an exponent that is written in a particular manner.
Logarithms can make multiplication and division of large numbers easier, because adding logarithms is the same as multiplying, and subtracting logarithms is the same as dividing.
The given expression is ${0.25^x} - 0.5 = 2$.
Move the constant part on the right side of the expression,
$ \Rightarrow {0.25^x} = 2.5$
Take a log on both sides of the expression.
$ \Rightarrow \log {0.25^x} = \log 2.5$
We know that the power law of log is,
$\log {a^b} = a\log b$
Using the above law, the expression will be,
$ \Rightarrow x\log 0.25 = \log 2.5$
Change the decimal part in the fraction part,
$ \Rightarrow x\log \dfrac{{25}}{{100}} = \log \dfrac{{25}}{{10}}$
Cancel out the common factors,
$ \Rightarrow x\log \dfrac{1}{4} = \log \dfrac{5}{2}$
We know that,
$\log \dfrac{a}{b} = \log a - \log b$
Using the above law, the expression will be,
$ \Rightarrow x\left( {\log 1 - \log 4} \right) = \log 5 - \log 2$
We know that, $\log 1 = 0$. Then,
$ \Rightarrow - x\log 4 = \log 5 - \log 2$
Now, divide both sides by $ - \log 4$ to get the value of $x$,
$ \Rightarrow x = \dfrac{{\log 5 - \log 2}}{{ - \log 4}}$
Multiply numerator and denominator by $ - 1$ and simplify,
$\therefore x = \dfrac{{\log 2 - \log 5}}{{\log 4}}$
Hence, the value of x is $\dfrac{{\log 2 - \log 5}}{{\log 4}}$.
Note: A logarithm with base 10 is a common logarithm. In our number system, there are ten bases and ten digits from 0-9, here the place value is determined by groups of ten. You can remember common logarithms with the one whose base is common as 10.
Change of base rule law,
${\log _y}x = \dfrac{{\log x}}{{\log y}}$
Product rule law,
$\log xy = \log x + \log y$
Quotient rule law,
$\log \dfrac{x}{y} = \log x - \log y$
Power rule law,
$\log {x^y} = y\log x$
Complete step by step solution:
Let us understand the definition of log first.
Logarithms are the opposite of exponentials, just as the opposite of addition is subtraction and the opposite of multiplication is division.
In other words, a logarithm is essentially an exponent that is written in a particular manner.
Logarithms can make multiplication and division of large numbers easier, because adding logarithms is the same as multiplying, and subtracting logarithms is the same as dividing.
The given expression is ${0.25^x} - 0.5 = 2$.
Move the constant part on the right side of the expression,
$ \Rightarrow {0.25^x} = 2.5$
Take a log on both sides of the expression.
$ \Rightarrow \log {0.25^x} = \log 2.5$
We know that the power law of log is,
$\log {a^b} = a\log b$
Using the above law, the expression will be,
$ \Rightarrow x\log 0.25 = \log 2.5$
Change the decimal part in the fraction part,
$ \Rightarrow x\log \dfrac{{25}}{{100}} = \log \dfrac{{25}}{{10}}$
Cancel out the common factors,
$ \Rightarrow x\log \dfrac{1}{4} = \log \dfrac{5}{2}$
We know that,
$\log \dfrac{a}{b} = \log a - \log b$
Using the above law, the expression will be,
$ \Rightarrow x\left( {\log 1 - \log 4} \right) = \log 5 - \log 2$
We know that, $\log 1 = 0$. Then,
$ \Rightarrow - x\log 4 = \log 5 - \log 2$
Now, divide both sides by $ - \log 4$ to get the value of $x$,
$ \Rightarrow x = \dfrac{{\log 5 - \log 2}}{{ - \log 4}}$
Multiply numerator and denominator by $ - 1$ and simplify,
$\therefore x = \dfrac{{\log 2 - \log 5}}{{\log 4}}$
Hence, the value of x is $\dfrac{{\log 2 - \log 5}}{{\log 4}}$.
Note: A logarithm with base 10 is a common logarithm. In our number system, there are ten bases and ten digits from 0-9, here the place value is determined by groups of ten. You can remember common logarithms with the one whose base is common as 10.
Change of base rule law,
${\log _y}x = \dfrac{{\log x}}{{\log y}}$
Product rule law,
$\log xy = \log x + \log y$
Quotient rule law,
$\log \dfrac{x}{y} = \log x - \log y$
Power rule law,
$\log {x^y} = y\log x$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE