Answer
Verified
430.8k+ views
Hint: By using the transformations, we can make the given question very easy to do. From the question given we have been asked to solve \[243={{9}^{2X+1}}\]. We know that we can express 243 as well as 9 as a power of 3. Then, we will make use of formula \[\Rightarrow {{\left( {{a}^{x}} \right)}^{y}}={{a}^{xy}}\] and simplify further to get the value of x.
Complete step-by-step solution:
From the question it had been given that \[243={{9}^{2X+1}}\]
\[\Rightarrow 243={{9}^{2X+1}}\]
We know that \[243\] can be written as \[{{3}^{5}}\]
By substituting it in the given question, we get the below equation,
\[\Rightarrow {{3}^{5}}={{9}^{2X+1}}\]
Similarly, we know that \[9\] can be written as \[{{3}^{2}}\]
Now, we know the basic formula of exponents,
\[\Rightarrow {{\left( {{a}^{x}} \right)}^{y}}={{a}^{xy}}\]
By substituting it in the given question, we get the below equation, and
By using the above basic formula of exponents, we get,
\[\Rightarrow {{3}^{5}}={{3}^{2\left( 2x+1 \right)}}\]
As the bases are equal in the above equation, we can equate the indices or powers.
By equating the indices or powers of the above equation, we get,
\[\Rightarrow 5=2\left( 2x+1 \right)\]
Furthermore simplifying the above equation we get,
\[\Rightarrow 5=4x+2\]
Now, take of\[2\] from both sides we get,
\[\Rightarrow 5-2=4x+2-2\]
\[\Rightarrow 3=4x\]
Now, divide both sides with \[4\] we get,
\[\Rightarrow x=\dfrac{3}{4}\]
Hence, the given equation is simplified.
Note: Students should be well aware of the exponents and powers. Students should be very careful while doing the calculation we should not make mistakes like here in this question \[\Rightarrow 243={{9}^{2x+1}}\] we should not equate \[\Rightarrow 5=2x+1\] like this we should equate it to \[\Rightarrow 5=4x+2\] to get answer in this type of problems as calculation part is somewhat difficult in this type of problems. Students should know which type of transformation is to be used for the given question to get the question into an easier way.
Complete step-by-step solution:
From the question it had been given that \[243={{9}^{2X+1}}\]
\[\Rightarrow 243={{9}^{2X+1}}\]
We know that \[243\] can be written as \[{{3}^{5}}\]
By substituting it in the given question, we get the below equation,
\[\Rightarrow {{3}^{5}}={{9}^{2X+1}}\]
Similarly, we know that \[9\] can be written as \[{{3}^{2}}\]
Now, we know the basic formula of exponents,
\[\Rightarrow {{\left( {{a}^{x}} \right)}^{y}}={{a}^{xy}}\]
By substituting it in the given question, we get the below equation, and
By using the above basic formula of exponents, we get,
\[\Rightarrow {{3}^{5}}={{3}^{2\left( 2x+1 \right)}}\]
As the bases are equal in the above equation, we can equate the indices or powers.
By equating the indices or powers of the above equation, we get,
\[\Rightarrow 5=2\left( 2x+1 \right)\]
Furthermore simplifying the above equation we get,
\[\Rightarrow 5=4x+2\]
Now, take of\[2\] from both sides we get,
\[\Rightarrow 5-2=4x+2-2\]
\[\Rightarrow 3=4x\]
Now, divide both sides with \[4\] we get,
\[\Rightarrow x=\dfrac{3}{4}\]
Hence, the given equation is simplified.
Note: Students should be well aware of the exponents and powers. Students should be very careful while doing the calculation we should not make mistakes like here in this question \[\Rightarrow 243={{9}^{2x+1}}\] we should not equate \[\Rightarrow 5=2x+1\] like this we should equate it to \[\Rightarrow 5=4x+2\] to get answer in this type of problems as calculation part is somewhat difficult in this type of problems. Students should know which type of transformation is to be used for the given question to get the question into an easier way.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE