
How do you solve $3\cot 2x-\sqrt{3}=0$?
Answer
453.3k+ views
Hint: We first simplify the equation $3\cot 2x-\sqrt{3}=0$ to find the value of $\cot 2x$. Then we find the principal value of x for which $3\cot 2x-\sqrt{3}=0$. In that domain, equal value of the same ratio gives equal angles. We find the angle value for x. At the end we also find the general solution for the equation $3\cot 2x-\sqrt{3}=0$.
Complete step-by-step solution:
It’s given that $3\cot 2x-\sqrt{3}=0$. We simplify the equation to get
$\begin{align}
& 3\cot 2x-\sqrt{3}=0 \\
& \Rightarrow \cot 2x=\dfrac{\sqrt{3}}{3}=\dfrac{1}{\sqrt{3}} \\
\end{align}$
The value in fraction is $\dfrac{1}{\sqrt{3}}$. We need to find x for which $\cot 2x=\dfrac{1}{\sqrt{3}}$.
We know that in the principal domain or the periodic value of $0\le x\le \pi $ for $\sin x$, if we get $\cot a=\cot b$ where $0\le a,b\le \pi $ then $a=b$.
We have the value of $\cot \left( \dfrac{\pi }{3} \right)$ as $\dfrac{1}{\sqrt{3}}$. $0<\dfrac{\pi }{3}<\pi $.
Therefore, $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}=\cot \left( \dfrac{\pi }{3} \right)$ which gives $2x=\dfrac{\pi }{3}$.
For $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the value of x is $x=\dfrac{\pi }{6}$.
We also can show the solutions (primary and general) of the equation $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$ through the graph. We take $y=\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$. We got two equations $y=\cot \left( 2x \right)$ and $y=\dfrac{1}{\sqrt{3}}$. We place them on the graph and find the solutions as their intersecting points.
We can see the primary solution in the interval $0\le x\le \pi $ is the point A as $x=\dfrac{\pi }{6}$.
All the other intersecting points of the curve and the line are general solutions.
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $0\le x\le \pi $. In that case we have to use the formula $x=n\pi +a$ for $\cot \left( x \right)=\cot a$ where $0\le a\le \pi $. For our given problem $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the general solution will be $2x=n\pi +\dfrac{\pi }{3}$. Here $n\in \mathbb{Z}$.
The simplified form of the general solution will be \[x=\dfrac{n\pi }{2}+\dfrac{\pi }{6}\].
Complete step-by-step solution:
It’s given that $3\cot 2x-\sqrt{3}=0$. We simplify the equation to get
$\begin{align}
& 3\cot 2x-\sqrt{3}=0 \\
& \Rightarrow \cot 2x=\dfrac{\sqrt{3}}{3}=\dfrac{1}{\sqrt{3}} \\
\end{align}$
The value in fraction is $\dfrac{1}{\sqrt{3}}$. We need to find x for which $\cot 2x=\dfrac{1}{\sqrt{3}}$.
We know that in the principal domain or the periodic value of $0\le x\le \pi $ for $\sin x$, if we get $\cot a=\cot b$ where $0\le a,b\le \pi $ then $a=b$.
We have the value of $\cot \left( \dfrac{\pi }{3} \right)$ as $\dfrac{1}{\sqrt{3}}$. $0<\dfrac{\pi }{3}<\pi $.
Therefore, $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}=\cot \left( \dfrac{\pi }{3} \right)$ which gives $2x=\dfrac{\pi }{3}$.
For $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the value of x is $x=\dfrac{\pi }{6}$.
We also can show the solutions (primary and general) of the equation $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$ through the graph. We take $y=\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$. We got two equations $y=\cot \left( 2x \right)$ and $y=\dfrac{1}{\sqrt{3}}$. We place them on the graph and find the solutions as their intersecting points.

We can see the primary solution in the interval $0\le x\le \pi $ is the point A as $x=\dfrac{\pi }{6}$.
All the other intersecting points of the curve and the line are general solutions.
Note: Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $0\le x\le \pi $. In that case we have to use the formula $x=n\pi +a$ for $\cot \left( x \right)=\cot a$ where $0\le a\le \pi $. For our given problem $\cot \left( 2x \right)=\dfrac{1}{\sqrt{3}}$, the general solution will be $2x=n\pi +\dfrac{\pi }{3}$. Here $n\in \mathbb{Z}$.
The simplified form of the general solution will be \[x=\dfrac{n\pi }{2}+\dfrac{\pi }{6}\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
