Answer
Verified
431.7k+ views
Hint: In order to solve this type of linear equation in one variable, first send all the constants to the right hand side and variables to the left hand side of the equation with the help of algebraic operations and then divide both the sides with the coefficient of the variable to get the desired solution for the equation.
Complete step-by-step answer:
To solve the given equation $ 3x - \dfrac{1}{3} = 5 $ , we will first send all the variables to the left hand side (L.H.S.) of the equation and constants to the right hand side of the equation (R.H.S.), so we can see that in the given equation $ 3x - \dfrac{1}{3} = 5 $ , we have to send only one constant from the left hand side to the right hand side, for this we will add both sides $ \dfrac{1}{3} $ , we will get
$
\Rightarrow 3x - \dfrac{1}{3} = 5 \\
\Rightarrow 3x - \dfrac{1}{3} + \dfrac{1}{3} = 5 + \dfrac{1}{3} \\
\Rightarrow 3x = 5 + \dfrac{1}{3} \;
$
Now taking L.C.M. in order to add \[5\;{\text{and}}\;\dfrac{1}{3}\]
$
\Rightarrow 3x = 5 + \dfrac{1}{3} \\
\Rightarrow 3x = \dfrac{{5 \times 3 + 1}}{3} \\
\Rightarrow 3x = \dfrac{{16}}{3} \;
$
Dividing both sides with the coefficient of $ x $ that is $ 3 $ to get the value for $ x $
$
\Rightarrow 3x = \dfrac{{16}}{3} \\
\Rightarrow \dfrac{{3x}}{3} = \dfrac{{16}}{{3 \times 3}} \\
\Rightarrow x = \dfrac{{16}}{9} \;
$
Therefore $ x = \dfrac{{16}}{9} $ is the required solution for the equation $ 3x - \dfrac{1}{3} = 5 $
So, the correct answer is “ $ x = \dfrac{{16}}{9} $ ”.
Note: The final result is in improper fraction, which means the numerical value of the numerator is greater than the numerical value of the denominator. So either convert the result into mixed fraction or write it in decimal form with the help of long division method.
Complete step-by-step answer:
To solve the given equation $ 3x - \dfrac{1}{3} = 5 $ , we will first send all the variables to the left hand side (L.H.S.) of the equation and constants to the right hand side of the equation (R.H.S.), so we can see that in the given equation $ 3x - \dfrac{1}{3} = 5 $ , we have to send only one constant from the left hand side to the right hand side, for this we will add both sides $ \dfrac{1}{3} $ , we will get
$
\Rightarrow 3x - \dfrac{1}{3} = 5 \\
\Rightarrow 3x - \dfrac{1}{3} + \dfrac{1}{3} = 5 + \dfrac{1}{3} \\
\Rightarrow 3x = 5 + \dfrac{1}{3} \;
$
Now taking L.C.M. in order to add \[5\;{\text{and}}\;\dfrac{1}{3}\]
$
\Rightarrow 3x = 5 + \dfrac{1}{3} \\
\Rightarrow 3x = \dfrac{{5 \times 3 + 1}}{3} \\
\Rightarrow 3x = \dfrac{{16}}{3} \;
$
Dividing both sides with the coefficient of $ x $ that is $ 3 $ to get the value for $ x $
$
\Rightarrow 3x = \dfrac{{16}}{3} \\
\Rightarrow \dfrac{{3x}}{3} = \dfrac{{16}}{{3 \times 3}} \\
\Rightarrow x = \dfrac{{16}}{9} \;
$
Therefore $ x = \dfrac{{16}}{9} $ is the required solution for the equation $ 3x - \dfrac{1}{3} = 5 $
So, the correct answer is “ $ x = \dfrac{{16}}{9} $ ”.
Note: The final result is in improper fraction, which means the numerical value of the numerator is greater than the numerical value of the denominator. So either convert the result into mixed fraction or write it in decimal form with the help of long division method.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE