Answer
Verified
429.9k+ views
Hint: Here in this question, we have to solve this question. The given question is in the form of an exponential number. It is defined as the number of times the number is multiplied by itself. By using the definition of exponential number and the law of indices we are solving the given question.
Complete step-by-step solution:
The exponential number is defined as the number of times the number is multiplied by itself. Here we have to find the value of x. Consider the given equation
\[{4^{{x^2} + 4x}} = {2^{ - 6}}\]------- (1)
Here in the above equation the first term present in LHS of the equation are the multiples of 2.
The exponential form of 4 is written as \[{2^2}\] ---- (2)
Substitute the equation (2) in the equation (1). So the given equation is rewritten as
\[ \Rightarrow {2^{2({x^2} + 4x)}} = {2^{ - 6}}\]
Hence by simplifying the exponents of the above equation.
\[ \Rightarrow {2^{2{x^2} + 8x}} = {2^{ - 6}}\]
According to the properties of exponential numbers, if the value of the base is the same then we can equate the exponents. So we can write the above equation as
\[ \Rightarrow 2{x^2} + 8x = - 6\]
Take -6 to the LHS, the equation can be written as
\[ \Rightarrow 2{x^2} + 8x + 6 = 0\]
Divide the above equation by 2 we have
\[ \Rightarrow {x^2} + 4x + 3 = 0\]
The above equation is written as
\[ \Rightarrow {x^2} + 3x + x + 3 = 0\]
Take x as common from first two term and 1 as common from last terms so we have
\[ \Rightarrow x(x + 3) + 1(x + 3) = 0\]
Take (x+3) as common in the above equation we have
\[ \Rightarrow (x + 3)(x + 1) = 0\]
On simplification we have
\[ \Rightarrow (x + 3) = 0\] and \[(x + 1) = 0\]
Hence we have
\[ \Rightarrow x = - 3\] and \[x = - 1\]
Therefore, we have solved the given question.
Therefore \[x = - 3\] and \[x = - 1\]
Note: The exponential number is an inverse of the logarithmic function. To solve we can apply the log on both sides but here we have used the definition of the exponential number we convert the number to the exponential number. The law of indices is used to solve these kinds of problems.
Complete step-by-step solution:
The exponential number is defined as the number of times the number is multiplied by itself. Here we have to find the value of x. Consider the given equation
\[{4^{{x^2} + 4x}} = {2^{ - 6}}\]------- (1)
Here in the above equation the first term present in LHS of the equation are the multiples of 2.
The exponential form of 4 is written as \[{2^2}\] ---- (2)
Substitute the equation (2) in the equation (1). So the given equation is rewritten as
\[ \Rightarrow {2^{2({x^2} + 4x)}} = {2^{ - 6}}\]
Hence by simplifying the exponents of the above equation.
\[ \Rightarrow {2^{2{x^2} + 8x}} = {2^{ - 6}}\]
According to the properties of exponential numbers, if the value of the base is the same then we can equate the exponents. So we can write the above equation as
\[ \Rightarrow 2{x^2} + 8x = - 6\]
Take -6 to the LHS, the equation can be written as
\[ \Rightarrow 2{x^2} + 8x + 6 = 0\]
Divide the above equation by 2 we have
\[ \Rightarrow {x^2} + 4x + 3 = 0\]
The above equation is written as
\[ \Rightarrow {x^2} + 3x + x + 3 = 0\]
Take x as common from first two term and 1 as common from last terms so we have
\[ \Rightarrow x(x + 3) + 1(x + 3) = 0\]
Take (x+3) as common in the above equation we have
\[ \Rightarrow (x + 3)(x + 1) = 0\]
On simplification we have
\[ \Rightarrow (x + 3) = 0\] and \[(x + 1) = 0\]
Hence we have
\[ \Rightarrow x = - 3\] and \[x = - 1\]
Therefore, we have solved the given question.
Therefore \[x = - 3\] and \[x = - 1\]
Note: The exponential number is an inverse of the logarithmic function. To solve we can apply the log on both sides but here we have used the definition of the exponential number we convert the number to the exponential number. The law of indices is used to solve these kinds of problems.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE