Answer
Verified
429.9k+ views
Hint: The given equation is a quadratic equation in t. To solve the equation means we have to find the values of t that satisfy the equation. To solve a quadratic equation there are three methods. The given equation is a simple quadratic equation so you can use the method of factorisation.
Complete step-by-step solution:
The given equation is a quadratic equation in t as the degree of the equation is 2.
There are three ways to solve a quadratic equation. We shall use the method of factorisation to find the value or values of t that satisfy the given equation.
Method of factorisation is a method in which we write the equation as the product of linear polynomials which is equal to zero.
Let us first write the given equation in the standard form as $5{{t}^{2}}-25t=0$ …. (i)
We can see that the left hand side of the equation has a common multiple, i.e. 5. Therefore, we shall divide the equation (i) by 5 on both sides.
This gives us that ${{t}^{2}}-5t=0$
Now, we can see that the left hand side polynomial has a term ‘t’ in common. Therefore, we can write the equation in factored form as $t(t-5)=0$.
This means that either $t=0$ or $t-5=0$
This further means that either $t=0$ or $t=5$
Therefore, there are two values of t which satisfy the given equation. Hence, the solutions of the equation are 0 and 5.
Note: Other than factorisation, you may also use the complete square method or the quadratic formula to solve the quadratic equation. Unless it is mentioned which one to use, you can use any of the methods. Students must note that the number of solutions to a given equation in one variable is always less than or equal to the degree of the polynomial in the given equation.
Complete step-by-step solution:
The given equation is a quadratic equation in t as the degree of the equation is 2.
There are three ways to solve a quadratic equation. We shall use the method of factorisation to find the value or values of t that satisfy the given equation.
Method of factorisation is a method in which we write the equation as the product of linear polynomials which is equal to zero.
Let us first write the given equation in the standard form as $5{{t}^{2}}-25t=0$ …. (i)
We can see that the left hand side of the equation has a common multiple, i.e. 5. Therefore, we shall divide the equation (i) by 5 on both sides.
This gives us that ${{t}^{2}}-5t=0$
Now, we can see that the left hand side polynomial has a term ‘t’ in common. Therefore, we can write the equation in factored form as $t(t-5)=0$.
This means that either $t=0$ or $t-5=0$
This further means that either $t=0$ or $t=5$
Therefore, there are two values of t which satisfy the given equation. Hence, the solutions of the equation are 0 and 5.
Note: Other than factorisation, you may also use the complete square method or the quadratic formula to solve the quadratic equation. Unless it is mentioned which one to use, you can use any of the methods. Students must note that the number of solutions to a given equation in one variable is always less than or equal to the degree of the polynomial in the given equation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE