Answer
Verified
438k+ views
Hint: We try to solve the equation with the help of graphical point of view and using the interval of range for the trigonometric function $y=\cos x$. We know the range for the function is $\left[ -1,1 \right]$. This gives the interval for the intersecting point for the equation $\cos x=x$.
Complete step by step answer:
We use the approximation theorem to find the point.
We try to solve the equation $\cos x=x$ through the graph and use the interval of range.
We know that the primary interval of domain for $\cos x$ is $x\in \mathbb{R}$ but the range is $\cos x\in \left[ -1,1 \right]$.
So, if there is any intersection point for $\cos x=x$, it has to be in the interval of $\left[ -1,1 \right]$.
Now we try to take the functions as $y=\cos x=x$.
We got two equations and put them as $y=\cos x$ and $y=x$.
We can see there is only one intersection between these curves.
Now we take the new function of $g\left( x \right)=x-cosx$.
Differentiating both sides, we get ${{g}^{'}}\left( x \right)=1+\sin x$.
Now we apply Newton’s method of approximation where ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
We put the values of the approximation as the terms of $i\in \mathbb{N}$.
The approximation value goes to ${{a}_{i}}\approx 0.739$.
The value also matches with the point with the graph.
Therefore, the sole intersecting point for the equation $\cos x=x$ is $x=0.739$. (approx.)
The solution for the $\cos x=x$ is $x=0.739$.
Note:
We can also use the function where $g\left( x \right)=cosx-x$. These types of functions give the difference between the points using the slope value of the function to reduce the error part. We can put the consecutive values in the theorem of ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
Complete step by step answer:
We use the approximation theorem to find the point.
We try to solve the equation $\cos x=x$ through the graph and use the interval of range.
We know that the primary interval of domain for $\cos x$ is $x\in \mathbb{R}$ but the range is $\cos x\in \left[ -1,1 \right]$.
So, if there is any intersection point for $\cos x=x$, it has to be in the interval of $\left[ -1,1 \right]$.
Now we try to take the functions as $y=\cos x=x$.
We got two equations and put them as $y=\cos x$ and $y=x$.
We can see there is only one intersection between these curves.
Now we take the new function of $g\left( x \right)=x-cosx$.
Differentiating both sides, we get ${{g}^{'}}\left( x \right)=1+\sin x$.
Now we apply Newton’s method of approximation where ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
We put the values of the approximation as the terms of $i\in \mathbb{N}$.
The approximation value goes to ${{a}_{i}}\approx 0.739$.
The value also matches with the point with the graph.
Therefore, the sole intersecting point for the equation $\cos x=x$ is $x=0.739$. (approx.)
The solution for the $\cos x=x$ is $x=0.739$.
Note:
We can also use the function where $g\left( x \right)=cosx-x$. These types of functions give the difference between the points using the slope value of the function to reduce the error part. We can put the consecutive values in the theorem of ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
Recently Updated Pages
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Class 10 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
Define cubit handspan armlength and footspan class 11 physics CBSE
Maximum speed of a particle in simple harmonic motion class 11 physics CBSE
Give a brief account on the canal system in sponge class 11 biology CBSE
Assertion Pila has dual mode of respiration Reason class 11 biology CBSE