
How do you solve $\cos x=x$?
Answer
455.1k+ views
Hint: We try to solve the equation with the help of graphical point of view and using the interval of range for the trigonometric function $y=\cos x$. We know the range for the function is $\left[ -1,1 \right]$. This gives the interval for the intersecting point for the equation $\cos x=x$.
Complete step by step answer:
We use the approximation theorem to find the point.
We try to solve the equation $\cos x=x$ through the graph and use the interval of range.
We know that the primary interval of domain for $\cos x$ is $x\in \mathbb{R}$ but the range is $\cos x\in \left[ -1,1 \right]$.
So, if there is any intersection point for $\cos x=x$, it has to be in the interval of $\left[ -1,1 \right]$.
Now we try to take the functions as $y=\cos x=x$.
We got two equations and put them as $y=\cos x$ and $y=x$.
We can see there is only one intersection between these curves.
Now we take the new function of $g\left( x \right)=x-cosx$.
Differentiating both sides, we get ${{g}^{'}}\left( x \right)=1+\sin x$.
Now we apply Newton’s method of approximation where ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
We put the values of the approximation as the terms of $i\in \mathbb{N}$.
The approximation value goes to ${{a}_{i}}\approx 0.739$.
The value also matches with the point with the graph.
Therefore, the sole intersecting point for the equation $\cos x=x$ is $x=0.739$. (approx.)
The solution for the $\cos x=x$ is $x=0.739$.
Note:
We can also use the function where $g\left( x \right)=cosx-x$. These types of functions give the difference between the points using the slope value of the function to reduce the error part. We can put the consecutive values in the theorem of ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
Complete step by step answer:
We use the approximation theorem to find the point.
We try to solve the equation $\cos x=x$ through the graph and use the interval of range.
We know that the primary interval of domain for $\cos x$ is $x\in \mathbb{R}$ but the range is $\cos x\in \left[ -1,1 \right]$.
So, if there is any intersection point for $\cos x=x$, it has to be in the interval of $\left[ -1,1 \right]$.
Now we try to take the functions as $y=\cos x=x$.
We got two equations and put them as $y=\cos x$ and $y=x$.

We can see there is only one intersection between these curves.
Now we take the new function of $g\left( x \right)=x-cosx$.
Differentiating both sides, we get ${{g}^{'}}\left( x \right)=1+\sin x$.
Now we apply Newton’s method of approximation where ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
We put the values of the approximation as the terms of $i\in \mathbb{N}$.
The approximation value goes to ${{a}_{i}}\approx 0.739$.
The value also matches with the point with the graph.
Therefore, the sole intersecting point for the equation $\cos x=x$ is $x=0.739$. (approx.)
The solution for the $\cos x=x$ is $x=0.739$.
Note:
We can also use the function where $g\left( x \right)=cosx-x$. These types of functions give the difference between the points using the slope value of the function to reduce the error part. We can put the consecutive values in the theorem of ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
