Answer
Verified
437.7k+ views
Hint: We try to solve the equation with the help of graphical point of view and using the interval of range for the trigonometric function $y=\cos x$. We know the range for the function is $\left[ -1,1 \right]$. This gives the interval for the intersecting point for the equation $\cos x=x$.
Complete step by step answer:
We use the approximation theorem to find the point.
We try to solve the equation $\cos x=x$ through the graph and use the interval of range.
We know that the primary interval of domain for $\cos x$ is $x\in \mathbb{R}$ but the range is $\cos x\in \left[ -1,1 \right]$.
So, if there is any intersection point for $\cos x=x$, it has to be in the interval of $\left[ -1,1 \right]$.
Now we try to take the functions as $y=\cos x=x$.
We got two equations and put them as $y=\cos x$ and $y=x$.
We can see there is only one intersection between these curves.
Now we take the new function of $g\left( x \right)=x-cosx$.
Differentiating both sides, we get ${{g}^{'}}\left( x \right)=1+\sin x$.
Now we apply Newton’s method of approximation where ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
We put the values of the approximation as the terms of $i\in \mathbb{N}$.
The approximation value goes to ${{a}_{i}}\approx 0.739$.
The value also matches with the point with the graph.
Therefore, the sole intersecting point for the equation $\cos x=x$ is $x=0.739$. (approx.)
The solution for the $\cos x=x$ is $x=0.739$.
Note:
We can also use the function where $g\left( x \right)=cosx-x$. These types of functions give the difference between the points using the slope value of the function to reduce the error part. We can put the consecutive values in the theorem of ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
Complete step by step answer:
We use the approximation theorem to find the point.
We try to solve the equation $\cos x=x$ through the graph and use the interval of range.
We know that the primary interval of domain for $\cos x$ is $x\in \mathbb{R}$ but the range is $\cos x\in \left[ -1,1 \right]$.
So, if there is any intersection point for $\cos x=x$, it has to be in the interval of $\left[ -1,1 \right]$.
Now we try to take the functions as $y=\cos x=x$.
We got two equations and put them as $y=\cos x$ and $y=x$.
We can see there is only one intersection between these curves.
Now we take the new function of $g\left( x \right)=x-cosx$.
Differentiating both sides, we get ${{g}^{'}}\left( x \right)=1+\sin x$.
Now we apply Newton’s method of approximation where ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
We put the values of the approximation as the terms of $i\in \mathbb{N}$.
The approximation value goes to ${{a}_{i}}\approx 0.739$.
The value also matches with the point with the graph.
Therefore, the sole intersecting point for the equation $\cos x=x$ is $x=0.739$. (approx.)
The solution for the $\cos x=x$ is $x=0.739$.
Note:
We can also use the function where $g\left( x \right)=cosx-x$. These types of functions give the difference between the points using the slope value of the function to reduce the error part. We can put the consecutive values in the theorem of ${{a}_{i+1}}={{a}_{i}}-\dfrac{g\left( {{a}_{i}} \right)}{{{g}^{'}}\left( {{a}_{i}} \right)}$.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Explain the Basics of Computer and Number System?
Class 11 Question and Answer - Your Ultimate Solutions Guide
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE
10 examples of friction in our daily life
Can anyone list 10 advantages and disadvantages of friction