Answer
Verified
429.9k+ views
Hint: The degree of an equation is the highest power of the variable in it. We can say whether an equation is linear or quadratic or any other polynomial equation from the degree of the equation. If the degree of the equation equals one, then the equation is linear. To solve a linear equation, we need to take all the variable terms to one side of the equation and constants to the other side of the equation. We will do the same for the given equation also.
Complete step by step solution:
The equation we are asked to solve is \[\dfrac{2x}{3}=4\]. As we can see that the degree of this equation is one. Hence, it is a linear equation. We know that to solve a linear equation, we need to take all the variable terms to one side of the equation and constants to the other side of the equation. We will do the same for the given equation also.
The given equation already has all the variable terms to one side, and the constant terms to the other side
\[\dfrac{2x}{3}=4\]
Multiplying both sides of the equation by \[\dfrac{3}{2}\], we get
\[\begin{align}
& \Rightarrow \dfrac{3}{2}\left( \dfrac{2x}{3} \right)=\dfrac{3}{2}\left( 4 \right) \\
& \Rightarrow x=6 \\
\end{align}\]
Thus, the solution of the given equation is \[x=6\].
Note: We can check if the solution is correct or not by substituting the value in the given equation. The left-hand side of the given equation is \[\dfrac{2x}{3}=4\], and the right-hand side of the equation is 4.
Substituting \[x=6\] in the LHS of the equation, we get
\[\begin{align}
& \Rightarrow LHS=\dfrac{2\left( 6 \right)}{3}=4 \\
& \Rightarrow LHS=4=RHS \\
& \therefore LHS=RHS \\
\end{align}\]
Thus, as the value satisfies the equation, the solution is correct.
Complete step by step solution:
The equation we are asked to solve is \[\dfrac{2x}{3}=4\]. As we can see that the degree of this equation is one. Hence, it is a linear equation. We know that to solve a linear equation, we need to take all the variable terms to one side of the equation and constants to the other side of the equation. We will do the same for the given equation also.
The given equation already has all the variable terms to one side, and the constant terms to the other side
\[\dfrac{2x}{3}=4\]
Multiplying both sides of the equation by \[\dfrac{3}{2}\], we get
\[\begin{align}
& \Rightarrow \dfrac{3}{2}\left( \dfrac{2x}{3} \right)=\dfrac{3}{2}\left( 4 \right) \\
& \Rightarrow x=6 \\
\end{align}\]
Thus, the solution of the given equation is \[x=6\].
Note: We can check if the solution is correct or not by substituting the value in the given equation. The left-hand side of the given equation is \[\dfrac{2x}{3}=4\], and the right-hand side of the equation is 4.
Substituting \[x=6\] in the LHS of the equation, we get
\[\begin{align}
& \Rightarrow LHS=\dfrac{2\left( 6 \right)}{3}=4 \\
& \Rightarrow LHS=4=RHS \\
& \therefore LHS=RHS \\
\end{align}\]
Thus, as the value satisfies the equation, the solution is correct.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE