Answer
Verified
429.9k+ views
Hint:This question is related to linear equation concept. An equation for a straight line is known as a linear equation. The term which is involved in a linear equation is either a constant or a single variable or product of a constant. The two variables can never be multiplied. All linear equations have a line graph. Linear equations are the same as linear function. The general form of writing a linear equation is$y = mx + c$ and $m$ is not equal to zero, where $m$ is the slope and $c$ is the point on which it cuts the y-axis. $y = mx + c$ is also known as the equation of the line in slope-intercept form. This given question deals with a specific type of linear equation and that is, formulas for problem solving.
Complete step by step solution:
Given is $A = \dfrac{r}{{2L}}$
We have to solve the given equation in order to find the value of $L$ for which the left-hand side is equal to the right-hand side of the equation.
Let us simply start by simplifying the given equation by multiplying both sides of the equation by $2$.
$
\Rightarrow A = \dfrac{r}{{2L}} \\
\Rightarrow A \times 2 = \dfrac{r}{{2L}} \times 2 \\
\Rightarrow 2A = \dfrac{r}{L} \\
$
Next, let us multiply $L$ on both the sides of the equation and we get,
$
\Rightarrow 2A = \dfrac{r}{L} \\
\Rightarrow 2A \times L = \dfrac{r}{L} \times L \\
\Rightarrow 2AL = r \\
$
Now, we isolate $L$ on the left-hand side of the equation by dividing both the sides of the equation by $2A$ and we get,
$
\Rightarrow 2AL = r \\
\Rightarrow \dfrac{{2AL}}{{2A}} = \dfrac{r}{{2A}} \\
\Rightarrow L = \dfrac{r}{{2A}} \\
$
Therefore, the value of $L$ is $\dfrac{r}{{2A}}$.
Note: Now that we know the value of $L$ is $\dfrac{r}{{2A}}$, there is a way to double check our answer. In order to double check the solution we are supposed to substitute the value of $L$ which we got as
$\dfrac{r}{{2A}}$ in the given equation, $A = \dfrac{r}{{2L}}$
$
\Rightarrow A = \dfrac{r}{{2L}} \\
\Rightarrow A = \dfrac{r}{{2\left( {\dfrac{r}{{2A}}} \right)}} \\
\Rightarrow A = \dfrac{r}{2} \times \dfrac{{2A}}{r} \\
\Rightarrow A = A \\
$
Now, the left-hand side is equal to the right-hand side of the equation. So, we can conclude that our solution or the value of $L$ which we calculated was correct.
Complete step by step solution:
Given is $A = \dfrac{r}{{2L}}$
We have to solve the given equation in order to find the value of $L$ for which the left-hand side is equal to the right-hand side of the equation.
Let us simply start by simplifying the given equation by multiplying both sides of the equation by $2$.
$
\Rightarrow A = \dfrac{r}{{2L}} \\
\Rightarrow A \times 2 = \dfrac{r}{{2L}} \times 2 \\
\Rightarrow 2A = \dfrac{r}{L} \\
$
Next, let us multiply $L$ on both the sides of the equation and we get,
$
\Rightarrow 2A = \dfrac{r}{L} \\
\Rightarrow 2A \times L = \dfrac{r}{L} \times L \\
\Rightarrow 2AL = r \\
$
Now, we isolate $L$ on the left-hand side of the equation by dividing both the sides of the equation by $2A$ and we get,
$
\Rightarrow 2AL = r \\
\Rightarrow \dfrac{{2AL}}{{2A}} = \dfrac{r}{{2A}} \\
\Rightarrow L = \dfrac{r}{{2A}} \\
$
Therefore, the value of $L$ is $\dfrac{r}{{2A}}$.
Note: Now that we know the value of $L$ is $\dfrac{r}{{2A}}$, there is a way to double check our answer. In order to double check the solution we are supposed to substitute the value of $L$ which we got as
$\dfrac{r}{{2A}}$ in the given equation, $A = \dfrac{r}{{2L}}$
$
\Rightarrow A = \dfrac{r}{{2L}} \\
\Rightarrow A = \dfrac{r}{{2\left( {\dfrac{r}{{2A}}} \right)}} \\
\Rightarrow A = \dfrac{r}{2} \times \dfrac{{2A}}{r} \\
\Rightarrow A = A \\
$
Now, the left-hand side is equal to the right-hand side of the equation. So, we can conclude that our solution or the value of $L$ which we calculated was correct.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE