Answer
Verified
429.9k+ views
Hint: In this question, we are given a quadratic equation in terms of x as x is raised to the power 2 and we have to solve for the value of x. A quadratic equation is solved by using factorization or the quadratic formula or completing the square method. We will first convert the given equation to the standard form, that is, $a{x^2} + bx + c = 0$ and then compare them to find the value of the coefficients a, b and c. Then we will put these values in the quadratic formula and solve it. This way we will get the value of x in terms of y. As the degree of the equation is 2, so we will get 2 values of x.
Complete step-by-step solution:
We are given that $y = {x^2} - 2x$
Rearranging the equation, we get –
${x^2} - 2x - y = 0$
On comparing it with $a{x^2} + bx + c = 0$ , we get –
$a = 1,\,b = - 2\,and\,c = - y$
The quadratic formula is given as –
$
x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
\Rightarrow x = \dfrac{{ - ( - 2) \pm \sqrt {{{( - 2)}^2} - 4 \times 1 \times ( - y)} }}{{2(1)}} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 + 4y} }}{2} = \dfrac{{2 \pm 2\sqrt {1 + y} }}{2} \\
\Rightarrow x = 1 \pm \sqrt {1 + y} \\
$
Hence when $y = {x^2} - 2x$ , we get $x = 1 + \sqrt {1 + y} $ or $x = 1 - \sqrt {1 + y} $ .
Note: When the unknown variable quantity in an algebraic expression is raised to some non-negative integer as the power, we get a polynomial equation, and the highest power of the unknown quantity in the equation is known as the degree of the polynomial equation. The highest exponent of x in the given equation is 2, so it has a degree 2 and the polynomial equation is a quadratic equation. We can verify that the answer obtained is correct by putting the obtained value of x in the given equation.
Complete step-by-step solution:
We are given that $y = {x^2} - 2x$
Rearranging the equation, we get –
${x^2} - 2x - y = 0$
On comparing it with $a{x^2} + bx + c = 0$ , we get –
$a = 1,\,b = - 2\,and\,c = - y$
The quadratic formula is given as –
$
x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}} \\
\Rightarrow x = \dfrac{{ - ( - 2) \pm \sqrt {{{( - 2)}^2} - 4 \times 1 \times ( - y)} }}{{2(1)}} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 + 4y} }}{2} = \dfrac{{2 \pm 2\sqrt {1 + y} }}{2} \\
\Rightarrow x = 1 \pm \sqrt {1 + y} \\
$
Hence when $y = {x^2} - 2x$ , we get $x = 1 + \sqrt {1 + y} $ or $x = 1 - \sqrt {1 + y} $ .
Note: When the unknown variable quantity in an algebraic expression is raised to some non-negative integer as the power, we get a polynomial equation, and the highest power of the unknown quantity in the equation is known as the degree of the polynomial equation. The highest exponent of x in the given equation is 2, so it has a degree 2 and the polynomial equation is a quadratic equation. We can verify that the answer obtained is correct by putting the obtained value of x in the given equation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE