Answer
Verified
429k+ views
Hint: In this question, we have an equation. Which have two sides’ left-hand side and right-hand side. First we take the left hand side and solve it.to solve the left hand side we used a formula and formula is given as below.
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
By using the above formula we solve the left hand side, and then we write the left hand side is equal to the right hand side. After that we find the value of\[x\].
Complete step by step answer:
In this question we have given an equation that is,
\[{\left( {x - 3} \right)^2} = 36\]
First, we take the left hand side from the above equation and want to solve it.
Then, the left hand side is.
\[{\left( {x - 3} \right)^2}\]
We know that, \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Then above the left hand side is written as below.
\[
{\left( {x - 3} \right)^2} \\
= {x^2} + {3^2} - 2\times 3\times x \\
= {x^2} + 9 - 6x \\
\]
Now we write that the right left hand side is equal to the right hand side.
Then,
\[ \Rightarrow {x^2} + 9 - 6x = 36\]
We take \[36\] on the left hand side and on the right hand side.
Then,
Above equation is written as below.
\[ \Rightarrow {x^2} + 9 - 6x - 36 = 0\]
We solve the above equation.
\[{x^2} - 6x - 27 = 0\]
The above equation is a quadratic equation. We solve this equation for the value of\[x\].
Then,
\[
\Rightarrow {x^2} - 6x - 27 = 0 \\
\Rightarrow {x^2} + 3x - 9x - 27 = 0 \\
\]
We take the \[x\]is common in the first two and \[ - 9\]is common in the last two.
Then,
\[
x\left( {x + 3} \right) - 9\left( {x + 3} \right) = 0 \\
\left( {x + 3} \right)\left( {x - 9} \right) = 0 \\
\]
Then,
\[
x + 3 = 0 \\
\therefore x = - 3 \\
\]
And,
\[
x - 9 = 0 \\
\therefore x = 9 \\
\]
Therefore, the values of \[x\] are \[ - 3\] and \[9\].
Note:
In this question, an equation of \[x\] is given, which I want to solve. An equation is defined as it has two things which are equal. And the equation also likes a statement “this equal that”. The equation has two things or two sides, the left side is known as the left hand side and the right side is known as the right hand side. The left-hand side is denoted as “LHS” and the right hand side is denoted as “RHS”.
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
By using the above formula we solve the left hand side, and then we write the left hand side is equal to the right hand side. After that we find the value of\[x\].
Complete step by step answer:
In this question we have given an equation that is,
\[{\left( {x - 3} \right)^2} = 36\]
First, we take the left hand side from the above equation and want to solve it.
Then, the left hand side is.
\[{\left( {x - 3} \right)^2}\]
We know that, \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Then above the left hand side is written as below.
\[
{\left( {x - 3} \right)^2} \\
= {x^2} + {3^2} - 2\times 3\times x \\
= {x^2} + 9 - 6x \\
\]
Now we write that the right left hand side is equal to the right hand side.
Then,
\[ \Rightarrow {x^2} + 9 - 6x = 36\]
We take \[36\] on the left hand side and on the right hand side.
Then,
Above equation is written as below.
\[ \Rightarrow {x^2} + 9 - 6x - 36 = 0\]
We solve the above equation.
\[{x^2} - 6x - 27 = 0\]
The above equation is a quadratic equation. We solve this equation for the value of\[x\].
Then,
\[
\Rightarrow {x^2} - 6x - 27 = 0 \\
\Rightarrow {x^2} + 3x - 9x - 27 = 0 \\
\]
We take the \[x\]is common in the first two and \[ - 9\]is common in the last two.
Then,
\[
x\left( {x + 3} \right) - 9\left( {x + 3} \right) = 0 \\
\left( {x + 3} \right)\left( {x - 9} \right) = 0 \\
\]
Then,
\[
x + 3 = 0 \\
\therefore x = - 3 \\
\]
And,
\[
x - 9 = 0 \\
\therefore x = 9 \\
\]
Therefore, the values of \[x\] are \[ - 3\] and \[9\].
Note:
In this question, an equation of \[x\] is given, which I want to solve. An equation is defined as it has two things which are equal. And the equation also likes a statement “this equal that”. The equation has two things or two sides, the left side is known as the left hand side and the right side is known as the right hand side. The left-hand side is denoted as “LHS” and the right hand side is denoted as “RHS”.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE