Answer
Verified
431.4k+ views
Hint: In this particular question we need to use basic logarithmic properties to simplify the equation. Then we need to further solve the equation and get the desired answer.
Complete step by step solution:
In the above question, it is given that,
$\log x + \log (x - 3) = 1$
(Since $\log a + \log b = \log (ab)$ )
Using the above stated property we get,
$ \Rightarrow \log (x(x - 3)) = 1$
Taking antilog on both sides of the equation we get,
$ \Rightarrow anti\log (\log (x(x - 3))) = anti\log 1$
$ \Rightarrow x(x - 3) = {10^1}$
On solving the above equation we get a quadratic equation
$ \Rightarrow {x^2} - 3x = 10$
Subtracting 10 from both sides of the equation
$ \Rightarrow {x^2} - 3x - 10 = 0$
Now solve the above quadratic equation for x
$ \Rightarrow {x^2} - 5x + 2x - 10 = 0$
$ \Rightarrow x(x - 5) + 2(x - 5) = 0$
$ \Rightarrow (x + 2)(x - 5) = 0$
This implies that either $x = - 2$or $x = 5$
As log can not be a negative value therefore the $x = - 2$ is rejected and hence $x = 5$ is the required solution to the above logarithmic equation.
Note:
Remember to recall the basic logarithmic properties to solve the above question. Note that
$
\log x = 1 \\
\Rightarrow x = {10^1} \\
\Rightarrow x = 10 \\
$
The basic logarithmic algebra includes the following properties:
$
\log a + \log b = \log (ab) \\
\log a - \log b = \log \left( {\dfrac{a}{b}} \right) \\
\log {a^b} = b\log a \\
{\log _a}a = 1 \\
$
Complete step by step solution:
In the above question, it is given that,
$\log x + \log (x - 3) = 1$
(Since $\log a + \log b = \log (ab)$ )
Using the above stated property we get,
$ \Rightarrow \log (x(x - 3)) = 1$
Taking antilog on both sides of the equation we get,
$ \Rightarrow anti\log (\log (x(x - 3))) = anti\log 1$
$ \Rightarrow x(x - 3) = {10^1}$
On solving the above equation we get a quadratic equation
$ \Rightarrow {x^2} - 3x = 10$
Subtracting 10 from both sides of the equation
$ \Rightarrow {x^2} - 3x - 10 = 0$
Now solve the above quadratic equation for x
$ \Rightarrow {x^2} - 5x + 2x - 10 = 0$
$ \Rightarrow x(x - 5) + 2(x - 5) = 0$
$ \Rightarrow (x + 2)(x - 5) = 0$
This implies that either $x = - 2$or $x = 5$
As log can not be a negative value therefore the $x = - 2$ is rejected and hence $x = 5$ is the required solution to the above logarithmic equation.
Note:
Remember to recall the basic logarithmic properties to solve the above question. Note that
$
\log x = 1 \\
\Rightarrow x = {10^1} \\
\Rightarrow x = 10 \\
$
The basic logarithmic algebra includes the following properties:
$
\log a + \log b = \log (ab) \\
\log a - \log b = \log \left( {\dfrac{a}{b}} \right) \\
\log {a^b} = b\log a \\
{\log _a}a = 1 \\
$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE