How does one solve ${\log _3}15$ ?
Answer
Verified
435.6k+ views
Hint:For solving this particular problem we will use ${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$ , change of base rule may be used if $a$ and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero . For simplifying the equation , we will use the logarithm property that is $\log ab = \log a + \log b$ .
Formula used:
We used logarithm property i.e., The change of base rule may be used if $a$
and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero .
${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$
and $\log ab = \log a + \log b$ .
Complete solution step by step:
We have to find the value of ${\log _3}15$ ,
The change of base rule may be used if $a$
and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero .
${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$
Now, substitute values for the variables within the change of base formula, using $x = 10$.
${\log _3}15 = \dfrac{{{{\log }_{10}}15}}{{{{\log }_{10}}3}}$
Using logarithm property that is $\log ab = \log a + \log b$ ,
We can write ,
$
\Rightarrow {\log _3}15 = \dfrac{{{{\log }_{10}}5 + {{\log }_{10}}3}}{{{{\log }_{10}}3}} \\
\Rightarrow {\log _3}15 = \dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}3}} + 1 \\
$
Since $\dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}3}} = 1.46497352$ ,
Therefore , we get the following result ,
\[
\Rightarrow {\log _3}15 = 1.46497352 + 1 \\
\Rightarrow {\log _3}15 = 2.46497352 \\
\]
The result is shown in multiple forms.
Exact Form:
${\log _3}15 = \dfrac{{{{\log }_{10}}15}}{{{{\log }_{10}}3}}$
Decimal Form:
\[{\log _3}15 = 2.46497352\]
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have remember certain conditions , our end result must satisfy domain of that logarithm
Formula used:
We used logarithm property i.e., The change of base rule may be used if $a$
and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero .
${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$
and $\log ab = \log a + \log b$ .
Complete solution step by step:
We have to find the value of ${\log _3}15$ ,
The change of base rule may be used if $a$
and $b$ are greater than zero and not adequate to one , and $x$ is larger than zero .
${\log _b}a = \dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}$
Now, substitute values for the variables within the change of base formula, using $x = 10$.
${\log _3}15 = \dfrac{{{{\log }_{10}}15}}{{{{\log }_{10}}3}}$
Using logarithm property that is $\log ab = \log a + \log b$ ,
We can write ,
$
\Rightarrow {\log _3}15 = \dfrac{{{{\log }_{10}}5 + {{\log }_{10}}3}}{{{{\log }_{10}}3}} \\
\Rightarrow {\log _3}15 = \dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}3}} + 1 \\
$
Since $\dfrac{{{{\log }_{10}}5}}{{{{\log }_{10}}3}} = 1.46497352$ ,
Therefore , we get the following result ,
\[
\Rightarrow {\log _3}15 = 1.46497352 + 1 \\
\Rightarrow {\log _3}15 = 2.46497352 \\
\]
The result is shown in multiple forms.
Exact Form:
${\log _3}15 = \dfrac{{{{\log }_{10}}15}}{{{{\log }_{10}}3}}$
Decimal Form:
\[{\log _3}15 = 2.46497352\]
Note: The logarithm function says $\log x$ is only defined when $x$ is greater than zero. While defining logarithm function one should remember that the base of the log must be a positive real number and not equals to one . At the end we must recall that the logarithm function says $\log x$ is only defined when $x$ is greater than zero. While performing logarithm properties we have remember certain conditions , our end result must satisfy domain of that logarithm
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE