Answer
Verified
398.7k+ views
Hint: We have to know that, an ideal gas is a hypothetical gas made out of numerous arbitrarily moving point particles that are not liable to interparticle associations. The ideal gas idea is valuable since it complies with the ideal gas law, improves on condition of state, and is manageable to examination under factual mechanics. The prerequisite of zero connection can regularly be loose if, for instance, the collaboration is completely flexible or viewed as point-like crashes.
Complete answer:
We have to remember that the ideal gas law is an augmentation of tentatively found gas laws. It can likewise be gotten from tiny contemplations. Genuine liquids at low thickness and high temperature rough the conduct of old style ideal gas. Nonetheless, at lower temperatures or a higher thickness, a genuine liquid digresses emphatically from the conduct of an ideal gas, especially as it consolidates from a gas into a fluid or as it stores from a gas into a strong. This deviation is communicated as a compressibility factor.
The equation of ideal gas law has to be given,
$PV = nRT$
Where,
$P$ = Pressure
$V$ = Volume
$n$ = No. of moles
$R$ = Gas constant
$T$ = Temperature
Therefore, we have to find out the value for $n$ .
By the following expression to solve $n$ ,
$n = \dfrac{{PV}}{{RT}}$
Hence, $n$ has to be solved.
Note:
We have to see, the properties of an ideal gas are an ideal gas comprising an enormous number of indistinguishable particles. The volume involved by the actual atoms is insignificant contrasted with the volume involved by the gas. The atoms submit to Newton's laws of movement, and they move in irregular movement.
Complete answer:
We have to remember that the ideal gas law is an augmentation of tentatively found gas laws. It can likewise be gotten from tiny contemplations. Genuine liquids at low thickness and high temperature rough the conduct of old style ideal gas. Nonetheless, at lower temperatures or a higher thickness, a genuine liquid digresses emphatically from the conduct of an ideal gas, especially as it consolidates from a gas into a fluid or as it stores from a gas into a strong. This deviation is communicated as a compressibility factor.
The equation of ideal gas law has to be given,
$PV = nRT$
Where,
$P$ = Pressure
$V$ = Volume
$n$ = No. of moles
$R$ = Gas constant
$T$ = Temperature
Therefore, we have to find out the value for $n$ .
By the following expression to solve $n$ ,
$n = \dfrac{{PV}}{{RT}}$
Hence, $n$ has to be solved.
Note:
We have to see, the properties of an ideal gas are an ideal gas comprising an enormous number of indistinguishable particles. The volume involved by the actual atoms is insignificant contrasted with the volume involved by the gas. The atoms submit to Newton's laws of movement, and they move in irregular movement.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE