Answer
Verified
462.6k+ views
Hint: We are given an isothermal situation where an ideal gas is compressed. We know that when we compress a gas the volume of the gas gets decreased due to which the area also decreases. By finding the relation of this situation with pressure, we will get the solution (By using the ideal gas equation).
Formula used:
$PV=nRT$
Complete answer:
In the question it is said that when we compress an ideal gas isothermally, the pressure will increase. We are asked what causes the pressure to increase in such a situation.
We know that when we compress a gas isothermally, its temperature is constant and volume of the gas decreases.
Now let us consider the ideal gas equation. It is given as,
\[PV=nRT\], were ‘T’ is the temperature, ‘R’ is the ideal gas constant, ‘n’ is the number of moles, ‘V’ is the volume and ‘P’ is the pressure.
We know that in the given case the number of moles and temperature is a constant and ‘R’ is already a constant.
Therefore we can say that,
$PV=\text{constant}$
From the above equation we can say that pressure is inversely proportional to volume, i.e.
$P\propto \dfrac{1}{V}$
It simply says that as volume decreases, pressure increases.
Since in the given case it is said that we compress the volume; the volume of the gas decreases.
We know that as the volume decreases, area also decreases. So, when the area decreases the number of collisions per unit area increases.
This causes the increase in pressure.
So, the correct answer is “Option C”.
Note:
We can solve this using the kinetic theory of gases also.
We know that the average speed of a gas molecule at constant temperature is given by the equation,
${{V}_{avg}}=\sqrt{\dfrac{8KT}{\pi M}}$
From this equation we get,
$\Rightarrow {{V}_{avg}}=\sqrt{T}$
Thus the average velocity of each molecule increases and hence the number of collisions also increases, i.e. the number of collisions per unit area with the walls of the container increases.
Hence we get the solution.
Formula used:
$PV=nRT$
Complete answer:
In the question it is said that when we compress an ideal gas isothermally, the pressure will increase. We are asked what causes the pressure to increase in such a situation.
We know that when we compress a gas isothermally, its temperature is constant and volume of the gas decreases.
Now let us consider the ideal gas equation. It is given as,
\[PV=nRT\], were ‘T’ is the temperature, ‘R’ is the ideal gas constant, ‘n’ is the number of moles, ‘V’ is the volume and ‘P’ is the pressure.
We know that in the given case the number of moles and temperature is a constant and ‘R’ is already a constant.
Therefore we can say that,
$PV=\text{constant}$
From the above equation we can say that pressure is inversely proportional to volume, i.e.
$P\propto \dfrac{1}{V}$
It simply says that as volume decreases, pressure increases.
Since in the given case it is said that we compress the volume; the volume of the gas decreases.
We know that as the volume decreases, area also decreases. So, when the area decreases the number of collisions per unit area increases.
This causes the increase in pressure.
So, the correct answer is “Option C”.
Note:
We can solve this using the kinetic theory of gases also.
We know that the average speed of a gas molecule at constant temperature is given by the equation,
${{V}_{avg}}=\sqrt{\dfrac{8KT}{\pi M}}$
From this equation we get,
$\Rightarrow {{V}_{avg}}=\sqrt{T}$
Thus the average velocity of each molecule increases and hence the number of collisions also increases, i.e. the number of collisions per unit area with the walls of the container increases.
Hence we get the solution.
Recently Updated Pages
The oxidation process involves class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
During the electrolysis of sodium ethanoate the gas class 11 maths JEE_Main
1bromo3chlorocyclobutane when treated with two equivalents class 11 chem sec 1 JEE_Main
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
A uniform rod of length L and mass M is pivoted at class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE