How do you identify the vertical and horizontal translations of sine and cosine from a graph and an equation?
Answer
Verified
420.9k+ views
Hint: For the function \[y = f\left( x \right)\], the vertical translation is described by the equation \[y = f\left( x \right) + a\] and horizontal translation is described by the equation \[y = f\left( {x - a} \right)\]. the vertical translation is described by the equation \[y = f\left( x \right) + a\] such that if \[a\] is greater than zero then the shift in the graph is upward from the original and if \[a\] is less than zero then the shift in the graph is downward from the original. the horizontal translation is described by the equation \[y = f\left( {x - a} \right)\] such that if \[a\] is greater than zero then the shift in the graph is toward right from the original and if \[a\] is less than zero then the shift in the graph is toward left from the original.
Complete step by step solution:
Consider the sine function as \[y = \sin x\] and the cosine function as \[y = \cos x\].
It is known that for a function \[y = f\left( x \right)\], the vertical translation is described by the equation \[y = f\left( x \right) + a\] such that if \[a\] is greater than zero then the shift in the graph is upward from the original and if \[a\] is less than zero then the shift in the graph is downward from the original.
Therefore vertical translation of a sine function is written as \[y = \sin x + a\] and the vertical translation of a cosine function is written as \[y = \cos x + a\]. Where \[a\] cannot be zero.
Thus, if we are able to write the sin function in the form \[y = \sin x + a\] and the cosine function in the form \[y = \cos x + a\] where in both cases \[a \ne 0\] then it represents vertical translation in both trigonometric functions from the original.
In the graph, if sine functions or cosine functions wave is not symmetric to \[x\]-axis then there is a vertical shift in the graph from the original.
It is known that for a function \[y = f\left( x \right)\], the horizontal translation is described by the equation \[y = f\left( {x - a} \right)\] such that if \[a\] is greater than zero then the shift in the graph is toward right from the original and if \[a\] is less than zero then the shift in the graph is toward left from the original.
Therefore horizontal translation of a sine function is written as \[y = \sin \left( {x - a} \right)\] and the horizontal translation of a cosine function is written as \[y = \cos \left( {x - a} \right)\]. Where \[a\] cannot be zero.
Thus, if we are able to write the sin function in the form \[y = \sin \left( {x - a} \right)\] and the cosine function in the form \[y = \cos \left( {x - a} \right)\] where in both cases \[a \ne 0\] then it represents horizontal translation in both trigonometric functions from the original.
In the graph, if sine functions or cosine functions wave is not symmetric to \[y\]-axis then there is a horizontal shift in the graph from the original.
Note: For horizontal shift, the function is \[y = f\left( {x - a} \right)\] and for vertical shift, the function is \[y = f\left( x \right) + a\] if the original function is \[y = f\left( x \right)\]. The horizontal translation of a sine function is written as \[y = \sin \left( {x - a} \right)\] and the horizontal translation of a cosine function is written as \[y = \cos \left( {x - a} \right)\]. Where \[a\] cannot be zero. The vertical translation of a sine function is written as \[y = \sin x + a\] and the vertical translation of a cosine function is written as \[y = \cos x + a\]. Where \[a\] cannot be zero.
Complete step by step solution:
Consider the sine function as \[y = \sin x\] and the cosine function as \[y = \cos x\].
It is known that for a function \[y = f\left( x \right)\], the vertical translation is described by the equation \[y = f\left( x \right) + a\] such that if \[a\] is greater than zero then the shift in the graph is upward from the original and if \[a\] is less than zero then the shift in the graph is downward from the original.
Therefore vertical translation of a sine function is written as \[y = \sin x + a\] and the vertical translation of a cosine function is written as \[y = \cos x + a\]. Where \[a\] cannot be zero.
Thus, if we are able to write the sin function in the form \[y = \sin x + a\] and the cosine function in the form \[y = \cos x + a\] where in both cases \[a \ne 0\] then it represents vertical translation in both trigonometric functions from the original.
In the graph, if sine functions or cosine functions wave is not symmetric to \[x\]-axis then there is a vertical shift in the graph from the original.
It is known that for a function \[y = f\left( x \right)\], the horizontal translation is described by the equation \[y = f\left( {x - a} \right)\] such that if \[a\] is greater than zero then the shift in the graph is toward right from the original and if \[a\] is less than zero then the shift in the graph is toward left from the original.
Therefore horizontal translation of a sine function is written as \[y = \sin \left( {x - a} \right)\] and the horizontal translation of a cosine function is written as \[y = \cos \left( {x - a} \right)\]. Where \[a\] cannot be zero.
Thus, if we are able to write the sin function in the form \[y = \sin \left( {x - a} \right)\] and the cosine function in the form \[y = \cos \left( {x - a} \right)\] where in both cases \[a \ne 0\] then it represents horizontal translation in both trigonometric functions from the original.
In the graph, if sine functions or cosine functions wave is not symmetric to \[y\]-axis then there is a horizontal shift in the graph from the original.
Note: For horizontal shift, the function is \[y = f\left( {x - a} \right)\] and for vertical shift, the function is \[y = f\left( x \right) + a\] if the original function is \[y = f\left( x \right)\]. The horizontal translation of a sine function is written as \[y = \sin \left( {x - a} \right)\] and the horizontal translation of a cosine function is written as \[y = \cos \left( {x - a} \right)\]. Where \[a\] cannot be zero. The vertical translation of a sine function is written as \[y = \sin x + a\] and the vertical translation of a cosine function is written as \[y = \cos x + a\]. Where \[a\] cannot be zero.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE