
If (1+i)(1+2i)…(1+ni) = x+iy, then prove that
\[{{x}^{2}}+{{y}^{2}}=2\cdot 5\cdot 10\ldots \left( 1+{{n}^{2}} \right)\]
Answer
618.9k+ views
Hint: Apply mod on both sides of the equation. Use the fact that if a and b are two complex numbers then |ab| = |a||b|. Use the fact that if z = x+iy then $\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$. Square both sides and use the fact that \[{{\left( ab \right)}^{m}}={{a}^{m}}{{b}^{m}}\]
Complete step-by-step answer:
We have (1+i)(1+2i)…(1+ni) = x+iy,
Taking absolute value on both sides, we get
|(1+i)(1+2i)…(1+ni)| =| x+iy|
Using |ab| = |a||b|, we get
|(1+i)||(1+2i)|…|(1+ni)| = |x+iy|
Squaring both sides, we get
\[{{\left( \left| \left( 1+i \right) \right|\left| \left( 1+2i \right) \right|\ldots \left| \left( 1+ni \right) \right| \right)}^{2}}\text{ }=\text{ }{{\left( \left| x+iy \right| \right)}^{2}}\]
Using if z = x+iy then $\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$, we get
\[\begin{align}
& {{\left( \sqrt{{{1}^{2}}+{{1}^{2}}}\sqrt{{{1}^{2}}+{{2}^{2}}}\ldots \sqrt{{{1}^{2}}+{{n}^{2}}} \right)}^{2}}\text{ }=\text{ }{{\left( \sqrt{{{x}^{2}}+{{y}^{2}}} \right)}^{2}} \\
& \Rightarrow \left( 1+1 \right)\left( 1+4 \right)\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow 2\cdot 5\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
\end{align}\]
Hence proved.
Note: [1] The above statement can also be proved by taking the conjugate over the whole expression and using $z\overline{z}={{\left| z \right|}^{2}}$
We have (1+i)(1+2i)…(1+ni) = x+iy (i)
Taking conjugate on both sides we get
\[\overline{~\left( 1+i \right)}\overline{\left( 1+2i \right)}\ldots \overline{\left( 1+ni \right)}\text{ }=\text{ }\overline{x+iy}\text{ (ii)}\]
Multiplying equation (i) and equation (ii) we get
\[\begin{align}
& \overline{~\left( 1+i \right)}\overline{\left( 1+2i \right)}\ldots \overline{\left( 1+ni \right)}(1+i)\left( 1+2i \right)\ldots \left( 1+ni \right)\text{ = }\overline{x+iy}\left( x+iy \right) \\
& \Rightarrow \left( 1+i \right)\left( 1+i \right)\overline{\left( 1+2i \right)}\left( 1+2i \right)\ldots \overline{\left( 1+ni \right)}\left( 1+ni \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow \left( 1+1 \right)\left( 1+4 \right)\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow 2\cdot 5\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
\end{align}\]
Hence proved.
[2] The property |ab|= |a||b| of complex numbers are very important and have a lot of applications in the field of mathematics,e.g. It can be proven that the product of numbers expressible as the sum of two squares is also expressible as the sum of two squares. Consider number P and Q such that $P={{a}^{2}}+{{b}^{2}}$ and $Q={{c}^{2}}+{{d}^{2}}$
Let ${{z}_{1}}=a+ib$ and ${{z}_{2}}=c+id$
${{z}_{1}}{{z}_{2}}=ac-bd+i\left( ad+bc \right)$
Taking mod on both sides we get
$\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|=\sqrt{{{\left( ac-bd \right)}^{2}}+{{\left( ad+bc \right)}^{2}}}$
Squaring both sides we get
$PQ={{\left( ac-bd \right)}^{2}}+{{\left( ad+bc \right)}^{2}}$
In other words, PQ is also a sum of squares of two numbers
Complete step-by-step answer:
We have (1+i)(1+2i)…(1+ni) = x+iy,
Taking absolute value on both sides, we get
|(1+i)(1+2i)…(1+ni)| =| x+iy|
Using |ab| = |a||b|, we get
|(1+i)||(1+2i)|…|(1+ni)| = |x+iy|
Squaring both sides, we get
\[{{\left( \left| \left( 1+i \right) \right|\left| \left( 1+2i \right) \right|\ldots \left| \left( 1+ni \right) \right| \right)}^{2}}\text{ }=\text{ }{{\left( \left| x+iy \right| \right)}^{2}}\]
Using if z = x+iy then $\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$, we get
\[\begin{align}
& {{\left( \sqrt{{{1}^{2}}+{{1}^{2}}}\sqrt{{{1}^{2}}+{{2}^{2}}}\ldots \sqrt{{{1}^{2}}+{{n}^{2}}} \right)}^{2}}\text{ }=\text{ }{{\left( \sqrt{{{x}^{2}}+{{y}^{2}}} \right)}^{2}} \\
& \Rightarrow \left( 1+1 \right)\left( 1+4 \right)\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow 2\cdot 5\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
\end{align}\]
Hence proved.
Note: [1] The above statement can also be proved by taking the conjugate over the whole expression and using $z\overline{z}={{\left| z \right|}^{2}}$
We have (1+i)(1+2i)…(1+ni) = x+iy (i)
Taking conjugate on both sides we get
\[\overline{~\left( 1+i \right)}\overline{\left( 1+2i \right)}\ldots \overline{\left( 1+ni \right)}\text{ }=\text{ }\overline{x+iy}\text{ (ii)}\]
Multiplying equation (i) and equation (ii) we get
\[\begin{align}
& \overline{~\left( 1+i \right)}\overline{\left( 1+2i \right)}\ldots \overline{\left( 1+ni \right)}(1+i)\left( 1+2i \right)\ldots \left( 1+ni \right)\text{ = }\overline{x+iy}\left( x+iy \right) \\
& \Rightarrow \left( 1+i \right)\left( 1+i \right)\overline{\left( 1+2i \right)}\left( 1+2i \right)\ldots \overline{\left( 1+ni \right)}\left( 1+ni \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow \left( 1+1 \right)\left( 1+4 \right)\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
& \Rightarrow 2\cdot 5\ldots \left( {{1}^{2}}+{{n}^{2}} \right)={{x}^{2}}+{{y}^{2}} \\
\end{align}\]
Hence proved.
[2] The property |ab|= |a||b| of complex numbers are very important and have a lot of applications in the field of mathematics,e.g. It can be proven that the product of numbers expressible as the sum of two squares is also expressible as the sum of two squares. Consider number P and Q such that $P={{a}^{2}}+{{b}^{2}}$ and $Q={{c}^{2}}+{{d}^{2}}$
Let ${{z}_{1}}=a+ib$ and ${{z}_{2}}=c+id$
${{z}_{1}}{{z}_{2}}=ac-bd+i\left( ad+bc \right)$
Taking mod on both sides we get
$\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|=\sqrt{{{\left( ac-bd \right)}^{2}}+{{\left( ad+bc \right)}^{2}}}$
Squaring both sides we get
$PQ={{\left( ac-bd \right)}^{2}}+{{\left( ad+bc \right)}^{2}}$
In other words, PQ is also a sum of squares of two numbers
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

