
If 1 is a root of the quadratic equation \[{\text{3}}{{\text{x}}^{\text{2}}}{\text{ + ax - 2 = 0}}\] and the quadratic equation \[{\text{a}}\left( {{{\text{x}}^{\text{2}}}{\text{ + 6x}}} \right){\text{ - b = 0}}\] has equal roots, then what will be the value of b ?
Answer
620.4k+ views
Hint: Let us first, find the value of a and then put the value of a in the condition of equal roots to get the value of b.
Complete step-by-step answer:
Let, \[{\text{3}}{{\text{x}}^{\text{2}}}{\text{ + ax - 2 = 0}}\] (1)
And, \[{\text{a}}{{\text{x}}^{\text{2}}}{\text{ + 6ax - b = 0}}\] (2)
As it is given in the question that 1 is the root of equation 1.
And we know the condition of the roots of the equation that if p will be the root of any polynomial equation then p must satisfy that polynomial equation.
So, putting the value of x equal to 1 in equation 1. We get,
\[{\text{3}}{\left( 1 \right)^{\text{2}}}{\text{ + a}}\left( 1 \right){\text{ - 2 = 0}}\]
3 + a – 2 = 1 + a = 0
So, a = -1
Now, we had to find the value of b using equation 2.
So, as we know that for any quadratic equation \[p{x^{\text{2}}}{\text{ + qx + r = 0}}\]. If it has equal roots, then its determinant must be equal to zero.
And determinant of this quadratic equation will be \[{{\text{q}}^{\text{2}}}{\text{ - 4pr}}\]
As equation 2 has equal roots.
So, determinant of equation 2 will also be zero.
So, \[{\left( {{\text{6a}}} \right)^{\text{2}}}{\text{ - 4a}}\left( {{\text{ - b}}} \right){\text{ = 0}}\] (3)
Now putting the value of a in equation 3. We get,
\[{\left( {{\text{6}}\left( {{\text{ - 1}}} \right)} \right)^{\text{2}}}{\text{ - 4}}\left( {{\text{ - 1}}} \right)\left( {{\text{ - b}}} \right){\text{ = 0}}\]
\[{\left( {{\text{ - 6}}} \right)^{\text{2}}}{\text{ - 4b = 0}}\]
36 = 4b
Therefore, b = 9
Hence, the value of b will be equal to 9.
Note: Whenever we came up with this type of problem first, we had to find the value of a by putting the value of the given root of the equation to that equation. And after that we had to put the determinant of another given equation equal to zero because if roots of any quadratic equation are equal then its determinant must be equal to zero. This will be the easiest and efficient way to find the value of b.
Complete step-by-step answer:
Let, \[{\text{3}}{{\text{x}}^{\text{2}}}{\text{ + ax - 2 = 0}}\] (1)
And, \[{\text{a}}{{\text{x}}^{\text{2}}}{\text{ + 6ax - b = 0}}\] (2)
As it is given in the question that 1 is the root of equation 1.
And we know the condition of the roots of the equation that if p will be the root of any polynomial equation then p must satisfy that polynomial equation.
So, putting the value of x equal to 1 in equation 1. We get,
\[{\text{3}}{\left( 1 \right)^{\text{2}}}{\text{ + a}}\left( 1 \right){\text{ - 2 = 0}}\]
3 + a – 2 = 1 + a = 0
So, a = -1
Now, we had to find the value of b using equation 2.
So, as we know that for any quadratic equation \[p{x^{\text{2}}}{\text{ + qx + r = 0}}\]. If it has equal roots, then its determinant must be equal to zero.
And determinant of this quadratic equation will be \[{{\text{q}}^{\text{2}}}{\text{ - 4pr}}\]
As equation 2 has equal roots.
So, determinant of equation 2 will also be zero.
So, \[{\left( {{\text{6a}}} \right)^{\text{2}}}{\text{ - 4a}}\left( {{\text{ - b}}} \right){\text{ = 0}}\] (3)
Now putting the value of a in equation 3. We get,
\[{\left( {{\text{6}}\left( {{\text{ - 1}}} \right)} \right)^{\text{2}}}{\text{ - 4}}\left( {{\text{ - 1}}} \right)\left( {{\text{ - b}}} \right){\text{ = 0}}\]
\[{\left( {{\text{ - 6}}} \right)^{\text{2}}}{\text{ - 4b = 0}}\]
36 = 4b
Therefore, b = 9
Hence, the value of b will be equal to 9.
Note: Whenever we came up with this type of problem first, we had to find the value of a by putting the value of the given root of the equation to that equation. And after that we had to put the determinant of another given equation equal to zero because if roots of any quadratic equation are equal then its determinant must be equal to zero. This will be the easiest and efficient way to find the value of b.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

