Answer
Verified
441.3k+ views
Hint: According to given in the question we have to determine the value of b if 1 is the root of the quadratic equation $3{x^2} + ax - 2 = 0$ and the quadratic equation $a({x^2} + 6x) - b = 0$ has equal roots. So, first of all as mentioned in the question that 1 is the root of the given equation so it will satisfy the equation hence, we have to substitute this in the given expression which is $3{x^2} + ax - 2 = 0$ so that we can easily determine the value of a.
Now, as mentioned in the question that the quadratic expression $a({x^2} + 6x) - b = 0$ has two equal roots so we have to use the formula for the quadratic expression when the roots are equal to each other which is as mentioned below:
$ \Rightarrow {b^2} = 4ac..............(A)$
Hence, on substituting all the values in the formula (A) just above in the expression $a({x^2} + 6x) - b = 0$ we can determine the value of $b$and we have to also substitute the value of a as obtained with the help of the expression$3{x^2} + ax - 2 = 0$ which we have already obtained.
Complete answer:
Step 1: Since, as given in the question that 1 is the root of the quadratic equation $3{x^2} + ax - 2 = 0$so we have to put $x = 1$in the given expression$3{x^2} + ax - 2 = 0$
$
\Rightarrow 3{\left( 1 \right)^2} + a\left( 1 \right) - 2 = 0 \\
\Rightarrow 3 + a - 2 = 0 \\
\Rightarrow a + 1 = 0 \\
\Rightarrow a = - 1.....................(1) \\
$
Step 2: now, it is given that given quadratic equation $a({x^2} + 6x) - b = 0$has equal roots. So we can apply the formula (A) for the expression $a({x^2} + 6x) - b = 0$
$ \Rightarrow {\left( {6a} \right)^2} = 4\left( a \right)\left( { - b} \right)$
Now, simply the expression just obtained above,
$ \Rightarrow 36{a^2} = - 4ab..................(2)$
Step 3: Now, we substitute the value of expression (1) in the expression (2) that is obtained in the solution step 2.
$
\Rightarrow 36{\left( { - 1} \right)^2} = - 4\left( { - 1} \right)b \\
\Rightarrow 36 = 4b \\
\Rightarrow b = 9 \\
$
Final solution: Hence, the value of $b$ is 9 when 1 is the root of the quadratic equation $3{x^2} + ax - 2 = 0$ and the quadratic equation $a({x^2} + 6x) - b = 0$ has equal roots.
Note:
First of all we have to put $x = 1$ in the expression $3{x^2} + ax - 2 = 0$ to obtain the value of $a$
We have to use the formula ${b^2} = 4ac$ for the equal roots of the given expression $a({x^2} + 6x) - b = 0$
Now, as mentioned in the question that the quadratic expression $a({x^2} + 6x) - b = 0$ has two equal roots so we have to use the formula for the quadratic expression when the roots are equal to each other which is as mentioned below:
$ \Rightarrow {b^2} = 4ac..............(A)$
Hence, on substituting all the values in the formula (A) just above in the expression $a({x^2} + 6x) - b = 0$ we can determine the value of $b$and we have to also substitute the value of a as obtained with the help of the expression$3{x^2} + ax - 2 = 0$ which we have already obtained.
Complete answer:
Step 1: Since, as given in the question that 1 is the root of the quadratic equation $3{x^2} + ax - 2 = 0$so we have to put $x = 1$in the given expression$3{x^2} + ax - 2 = 0$
$
\Rightarrow 3{\left( 1 \right)^2} + a\left( 1 \right) - 2 = 0 \\
\Rightarrow 3 + a - 2 = 0 \\
\Rightarrow a + 1 = 0 \\
\Rightarrow a = - 1.....................(1) \\
$
Step 2: now, it is given that given quadratic equation $a({x^2} + 6x) - b = 0$has equal roots. So we can apply the formula (A) for the expression $a({x^2} + 6x) - b = 0$
$ \Rightarrow {\left( {6a} \right)^2} = 4\left( a \right)\left( { - b} \right)$
Now, simply the expression just obtained above,
$ \Rightarrow 36{a^2} = - 4ab..................(2)$
Step 3: Now, we substitute the value of expression (1) in the expression (2) that is obtained in the solution step 2.
$
\Rightarrow 36{\left( { - 1} \right)^2} = - 4\left( { - 1} \right)b \\
\Rightarrow 36 = 4b \\
\Rightarrow b = 9 \\
$
Final solution: Hence, the value of $b$ is 9 when 1 is the root of the quadratic equation $3{x^2} + ax - 2 = 0$ and the quadratic equation $a({x^2} + 6x) - b = 0$ has equal roots.
Note:
First of all we have to put $x = 1$ in the expression $3{x^2} + ax - 2 = 0$ to obtain the value of $a$
We have to use the formula ${b^2} = 4ac$ for the equal roots of the given expression $a({x^2} + 6x) - b = 0$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE