Answer
Verified
497.4k+ views
Hint- Use the concept that for a quadratic equation or any function the zero of that quadratic equation or the function will always satisfy the equation or the value of that function will be zero.
Complete step-by-step solution -
Given that the function is $f\left( x \right) = k{x^2} - 3kx + 3k - 1$
And 1 is the zero of the equation. So by the help of hint we have
$f\left( 1 \right) = 0$
So proceeding forward with the function, we have
$
f\left( {x = 1} \right) = {\left. {k{x^2} - 3kx + 3k - 1} \right|_{x = 1}} = 0 \\
\Rightarrow f\left( 1 \right) = k{\left( 1 \right)^2} - 3k\left( 1 \right) + 3\left( 1 \right) - 1 = 0 \\
\Rightarrow k - 3k + 3 - 1 = 0 \\
$
Proceeding forward in order to find the value of $k$
\[ \Rightarrow k - 3k + 3 - 1 = 0 \\
\Rightarrow - 2k + 2 = 0 \\
\Rightarrow - 2k = - 2 \\
\Rightarrow k = 1 \\
\]
Hence, the value of k is 1.
Note- A zero of a function is an input value to the function that produces an output of 0. Also remember that roots of an equation are also called its zero. If one of the roots of the function is given, other roots can also be found out easily. Remember these points while solving such problems.
Complete step-by-step solution -
Given that the function is $f\left( x \right) = k{x^2} - 3kx + 3k - 1$
And 1 is the zero of the equation. So by the help of hint we have
$f\left( 1 \right) = 0$
So proceeding forward with the function, we have
$
f\left( {x = 1} \right) = {\left. {k{x^2} - 3kx + 3k - 1} \right|_{x = 1}} = 0 \\
\Rightarrow f\left( 1 \right) = k{\left( 1 \right)^2} - 3k\left( 1 \right) + 3\left( 1 \right) - 1 = 0 \\
\Rightarrow k - 3k + 3 - 1 = 0 \\
$
Proceeding forward in order to find the value of $k$
\[ \Rightarrow k - 3k + 3 - 1 = 0 \\
\Rightarrow - 2k + 2 = 0 \\
\Rightarrow - 2k = - 2 \\
\Rightarrow k = 1 \\
\]
Hence, the value of k is 1.
Note- A zero of a function is an input value to the function that produces an output of 0. Also remember that roots of an equation are also called its zero. If one of the roots of the function is given, other roots can also be found out easily. Remember these points while solving such problems.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE