Answer
Verified
499.5k+ views
Hint: Use general term of A.P. i.e, ${T_n} = a + (n - 1)d$.
We, know that the ${n^{th}}$term of an A.P. is given as:
${T_n} = a + (n - 1)d$
$\therefore {10^{th}}$term of A.P. will be:
$
\Rightarrow {T_{10}} = a + (10 - 1)d \\
\Rightarrow {T_{10}} = a + 9d \\
$
Similarly, ${15^{th}}$term will be:
$
\Rightarrow {T_{15}} = a + (15 - 1)d, \\
\Rightarrow {T_{15}} = a + 14d \\
$
Now, according to question:
$10{T_{10}} = 15{T_{15}}$
So, putting values of ${T_{10}}$and ${T_{15}}$from above, we’ll get:
$
\Rightarrow 10(a + 9d) = 15(a + 14d) \\
\Rightarrow 10a + 90d = 15a + 210d \\
\Rightarrow 5a + 120d = 0 \\
\Rightarrow a + 24d = 0 \\
$
And ${25^{th}}$term of A.P. will be:
$
\Rightarrow {T_{25}} = a + (25 - 1)d \\
\Rightarrow {T_{25}} = a + 24d \\
$
Putting the value $a + 24d = 0$ from above, we get:
$ \Rightarrow {T_{25}} = 0.$
Hence the ${25^{th}}$term of A.P. is zero.
Note: Since ${25^{th}}$ term of A.P. is zero, we can conclude that the sum of the first 49 terms of this A.P. is zero. In that case, the sum of the first 24 terms will be negative of the sum of the last 24 terms and ${25^{th}}$ term is already zero.
We, know that the ${n^{th}}$term of an A.P. is given as:
${T_n} = a + (n - 1)d$
$\therefore {10^{th}}$term of A.P. will be:
$
\Rightarrow {T_{10}} = a + (10 - 1)d \\
\Rightarrow {T_{10}} = a + 9d \\
$
Similarly, ${15^{th}}$term will be:
$
\Rightarrow {T_{15}} = a + (15 - 1)d, \\
\Rightarrow {T_{15}} = a + 14d \\
$
Now, according to question:
$10{T_{10}} = 15{T_{15}}$
So, putting values of ${T_{10}}$and ${T_{15}}$from above, we’ll get:
$
\Rightarrow 10(a + 9d) = 15(a + 14d) \\
\Rightarrow 10a + 90d = 15a + 210d \\
\Rightarrow 5a + 120d = 0 \\
\Rightarrow a + 24d = 0 \\
$
And ${25^{th}}$term of A.P. will be:
$
\Rightarrow {T_{25}} = a + (25 - 1)d \\
\Rightarrow {T_{25}} = a + 24d \\
$
Putting the value $a + 24d = 0$ from above, we get:
$ \Rightarrow {T_{25}} = 0.$
Hence the ${25^{th}}$term of A.P. is zero.
Note: Since ${25^{th}}$ term of A.P. is zero, we can conclude that the sum of the first 49 terms of this A.P. is zero. In that case, the sum of the first 24 terms will be negative of the sum of the last 24 terms and ${25^{th}}$ term is already zero.
Recently Updated Pages
What happens to the gravitational force between two class 11 physics NEET
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE