
If $16\cot x = 12$ find the value of $\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]$
A.7
B.$\dfrac{7}{3}$
C.$\dfrac{7}{2}$
D.None of these
Answer
583.2k+ views
Hint: For the given question we have to divide denominator and numerator with $\sin x$. It is known that $\dfrac{{\cos x}}{{\sin x}} = \cot x$. Then it is given that $16\cot x = 12$, we will substitute the value of $\cot x$ and after simplifying we the value of the given question.
Complete step-by-step answer:
Given $16\cot x = 12$simplifying, we get,
$ \Rightarrow \cot x = \dfrac{3}{4}$ ……………. $\left( i \right)$
Now according to question
$\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]$
Dividing denominator and numerator with $\sin x$,we get,
$ \Rightarrow \left[ {\dfrac{{1 + \dfrac{{\cos x}}{{\sin x}}}}{{1 - \dfrac{{\cos x}}{{\sin x}}}}} \right]$
Substituting $\dfrac{{\cos x}}{{\sin x}} = \cot x$, we get,
$ \Rightarrow \left[ {\dfrac{{1 + \cot x}}{{1 - \cot x}}} \right]$
Now, substituting $\left( i \right)$and on simplifying we get,
$ \Rightarrow \left[ {\dfrac{{1 + \dfrac{3}{4}}}{{1 - \dfrac{3}{4}}}} \right]$
$ = 7$
$\therefore \left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right] = 7$
Answer is option (A)
Note: Alternative method
$\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]$
Dividing denominator and numerator with$\cos x$we get
$ \Rightarrow \left[ {\dfrac{{\tan x + 1}}{{\tan x - 1}}} \right]$
We know that $\cot x = \dfrac{3}{4}$and $\tan x = \dfrac{1}{{\cot x}}$, we get,
$\therefore \tan x = \dfrac{4}{3}$………….. (ii)
Now substituting (ii) and simplifying we get
$ \Rightarrow \left[ {\dfrac{{\dfrac{4}{3} + 1}}{{\dfrac{4}{3} - 1}}} \right] = 7$
$\therefore \left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right] = 7$
Complete step-by-step answer:
Given $16\cot x = 12$simplifying, we get,
$ \Rightarrow \cot x = \dfrac{3}{4}$ ……………. $\left( i \right)$
Now according to question
$\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]$
Dividing denominator and numerator with $\sin x$,we get,
$ \Rightarrow \left[ {\dfrac{{1 + \dfrac{{\cos x}}{{\sin x}}}}{{1 - \dfrac{{\cos x}}{{\sin x}}}}} \right]$
Substituting $\dfrac{{\cos x}}{{\sin x}} = \cot x$, we get,
$ \Rightarrow \left[ {\dfrac{{1 + \cot x}}{{1 - \cot x}}} \right]$
Now, substituting $\left( i \right)$and on simplifying we get,
$ \Rightarrow \left[ {\dfrac{{1 + \dfrac{3}{4}}}{{1 - \dfrac{3}{4}}}} \right]$
$ = 7$
$\therefore \left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right] = 7$
Answer is option (A)
Note: Alternative method
$\left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right]$
Dividing denominator and numerator with$\cos x$we get
$ \Rightarrow \left[ {\dfrac{{\tan x + 1}}{{\tan x - 1}}} \right]$
We know that $\cot x = \dfrac{3}{4}$and $\tan x = \dfrac{1}{{\cot x}}$, we get,
$\therefore \tan x = \dfrac{4}{3}$………….. (ii)
Now substituting (ii) and simplifying we get
$ \Rightarrow \left[ {\dfrac{{\dfrac{4}{3} + 1}}{{\dfrac{4}{3} - 1}}} \right] = 7$
$\therefore \left[ {\dfrac{{\sin x + \cos x}}{{\sin x - \cos x}}} \right] = 7$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

