
If $1,{a_1},{a_2}.....,{a_{n - 1}}$ are the nth roots of unity then the value of $\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right)$ is equal to
(A) $\sqrt 3 $
(B) $\dfrac{1}{2}$
(C) $n$
(D) $0$
Answer
573.3k+ views
Hint: If $1,{a_1},{a_2}.....,{a_{n - 1}}$ are the ${n^{th}}$ roots of unity, that means they are the roots of the equation ${x^n} - 1 = 0$ . Express the roots of this equation in form of a product, i.e. ${x^n} - 1 = \left( {x - 1} \right)\left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$ . Now use the expansion of $\left( {{x^n} - 1} \right)$ in the left-hand side of the previous equation. Transpose the terms to obtain the required expression on one side. Put the value $x = 1$ to find the desired answer.
Complete step-by-step answer:
Here in this problem, we are given that $1,{a_1},{a_2}.....,{a_{n - 1}}$ are the ${n^{th}}$ roots of unity, i.e. ${n^{th}}$ roots of $1$ . And then we need to find the value of the expression $\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right)$ . We need to find the correct answer among the four given options.
Let’s discuss what is the ${n^{th}}$ roots of unity.
As we know that the equation having a power of $'n'$ over the variable will have $'n'$ number of roots. So when we consider the equation: ${x^n} = 1$ , here we know that the variable ‘x’ can obtain ‘n’ number of roots. And these are hence called the ${n^{th}}$ roots of unity.
So, according to the question $1,{a_1},{a_2}.....,{a_{n - 1}}$ are the ‘n’ roots of the equation ${x^n} = 1$ , this can be represented by:
$ \Rightarrow {x^n} = 1 \Rightarrow {x^n} - 1 = 0$
The product of difference of all the roots with the variable will be equal to zero. Now putting $1,{a_1},{a_2}.....,{a_{n - 1}}$ as the roots of this equation, we get:
$ \Rightarrow {x^n} - 1 = \left( {x - 1} \right)\left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$
This can be further simplified by transposing the term $\left( {x - 1} \right)$ to the left side
$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$
As we know the expansion from the binomial theorem, ${x^n} - 1 = \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right)$ . We can use this in the above equation:
$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$
Therefore, we get:
$ \Rightarrow \left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$
For obtaining the expression $\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right)$on the right side of the equation, we must substitute the value $x = 1$ on both sides of the above equation.
For $x = 1$, we get:
$ \Rightarrow \left( {{1^{n - 1}} + {1^{n - 2}} + ...... + {1^2} + 1 + 1} \right) = \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right)$
Since we know ${1^m} = 1$ , so on further solving it, we have:
$ \Rightarrow \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right) = \left( {{1^{n - 1}} + {1^{n - 2}} + ...... + {1^2} + 1 + 1} \right) = \left( {1 + 1 + ....n{\text{ }}times} \right) = 1 \times n$
Therefore, we get the value of expression as:
$ \Rightarrow \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right) = n$
Hence, the option (C) is the correct answer.
Note: In questions like this, the use of the power expansions series plays an important role. The expansion used in the above solution i.e. ${x^n} - 1 = \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right)$ is derived using the theorem, i.e. ${x^n} - {y^n} = \left( {x - y} \right)\left( {{x^{n - 1}} + {x^{n - 2}}y + {x^{n - 3}}{y^2} + ..... + x{y^{n - 2}} + {y^{n - 1}}} \right)$ where we put $y = 1$ .
Complete step-by-step answer:
Here in this problem, we are given that $1,{a_1},{a_2}.....,{a_{n - 1}}$ are the ${n^{th}}$ roots of unity, i.e. ${n^{th}}$ roots of $1$ . And then we need to find the value of the expression $\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right)$ . We need to find the correct answer among the four given options.
Let’s discuss what is the ${n^{th}}$ roots of unity.
As we know that the equation having a power of $'n'$ over the variable will have $'n'$ number of roots. So when we consider the equation: ${x^n} = 1$ , here we know that the variable ‘x’ can obtain ‘n’ number of roots. And these are hence called the ${n^{th}}$ roots of unity.
So, according to the question $1,{a_1},{a_2}.....,{a_{n - 1}}$ are the ‘n’ roots of the equation ${x^n} = 1$ , this can be represented by:
$ \Rightarrow {x^n} = 1 \Rightarrow {x^n} - 1 = 0$
The product of difference of all the roots with the variable will be equal to zero. Now putting $1,{a_1},{a_2}.....,{a_{n - 1}}$ as the roots of this equation, we get:
$ \Rightarrow {x^n} - 1 = \left( {x - 1} \right)\left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$
This can be further simplified by transposing the term $\left( {x - 1} \right)$ to the left side
$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$
As we know the expansion from the binomial theorem, ${x^n} - 1 = \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right)$ . We can use this in the above equation:
$ \Rightarrow \dfrac{{{x^n} - 1}}{{x - 1}} = \left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$
Therefore, we get:
$ \Rightarrow \left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right) = \left( {x - {a_1}} \right)\left( {x - {a_2}} \right).....\left( {x - {a_{n - 2}}} \right)\left( {x - {a_{n - 1}}} \right)$
For obtaining the expression $\left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right)......\left( {1 - {a_{n - 1}}} \right)$on the right side of the equation, we must substitute the value $x = 1$ on both sides of the above equation.
For $x = 1$, we get:
$ \Rightarrow \left( {{1^{n - 1}} + {1^{n - 2}} + ...... + {1^2} + 1 + 1} \right) = \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right)$
Since we know ${1^m} = 1$ , so on further solving it, we have:
$ \Rightarrow \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right) = \left( {{1^{n - 1}} + {1^{n - 2}} + ...... + {1^2} + 1 + 1} \right) = \left( {1 + 1 + ....n{\text{ }}times} \right) = 1 \times n$
Therefore, we get the value of expression as:
$ \Rightarrow \left( {1 - {a_1}} \right)\left( {1 - {a_2}} \right).....\left( {1 - {a_{n - 2}}} \right)\left( {1 - {a_{n - 1}}} \right) = n$
Hence, the option (C) is the correct answer.
Note: In questions like this, the use of the power expansions series plays an important role. The expansion used in the above solution i.e. ${x^n} - 1 = \left( {x - 1} \right)\left( {{x^{n - 1}} + {x^{n - 2}} + ...... + {x^2} + x + 1} \right)$ is derived using the theorem, i.e. ${x^n} - {y^n} = \left( {x - y} \right)\left( {{x^{n - 1}} + {x^{n - 2}}y + {x^{n - 3}}{y^2} + ..... + x{y^{n - 2}} + {y^{n - 1}}} \right)$ where we put $y = 1$ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

