Answer
Verified
498.3k+ views
Hint: Write $\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$. Then use the cos(a+b) formula to solve it.
Complete step-by-step answer:
We have to find out the approximate value of $\cos \left( {60^\circ 1'} \right)$
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$
As we know $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$, using it, we get
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1'..............\left( 1 \right)$
Now as we know 1 minute i.e. $1' = \dfrac{{1^\circ }}{{60^\circ }} = \dfrac{\alpha }{{60^\circ }}$ as $1^\circ = \alpha$ radians (given)
As we know the value of $\cos 60^\circ = \dfrac{1}{2},{\text{ }}\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
Substitute these value in equation 1
$
\Rightarrow \cos \left( {60^\circ 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1' \\
\Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right)..........\left( 2 \right) \\
$
Now,
$\left( {\dfrac{\alpha }{{60^\circ }}} \right) < < < < < 1$
Therefore, approximate value of
$\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq 1,{\text{ sin}}\left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq \dfrac{\alpha }{{60^\circ }}$
Therefore from equation 2
$\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right) = \dfrac{1}{2} \times 1 - \dfrac{{\sqrt 3 }}{2} \times \dfrac{\alpha }{{60^\circ }}$
$ \Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence the approximate value of $\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence option (c) is correct.
Note: In these types of problems, it is crucial to remember the sine and cosine of sum of angles and also know the approximate value of $\cos a$ and $\sin a$ if a is very small, then after simplification we will get the required approximate value.
Complete step-by-step answer:
We have to find out the approximate value of $\cos \left( {60^\circ 1'} \right)$
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$
As we know $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$, using it, we get
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1'..............\left( 1 \right)$
Now as we know 1 minute i.e. $1' = \dfrac{{1^\circ }}{{60^\circ }} = \dfrac{\alpha }{{60^\circ }}$ as $1^\circ = \alpha$ radians (given)
As we know the value of $\cos 60^\circ = \dfrac{1}{2},{\text{ }}\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
Substitute these value in equation 1
$
\Rightarrow \cos \left( {60^\circ 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1' \\
\Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right)..........\left( 2 \right) \\
$
Now,
$\left( {\dfrac{\alpha }{{60^\circ }}} \right) < < < < < 1$
Therefore, approximate value of
$\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq 1,{\text{ sin}}\left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq \dfrac{\alpha }{{60^\circ }}$
Therefore from equation 2
$\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right) = \dfrac{1}{2} \times 1 - \dfrac{{\sqrt 3 }}{2} \times \dfrac{\alpha }{{60^\circ }}$
$ \Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence the approximate value of $\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence option (c) is correct.
Note: In these types of problems, it is crucial to remember the sine and cosine of sum of angles and also know the approximate value of $\cos a$ and $\sin a$ if a is very small, then after simplification we will get the required approximate value.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE