
If \[22.5\] m of cloth costs Rs. 1350. What is the cost of \[6\dfrac{3}{4}\] m of cloth?
Answer
561.6k+ views
Hint: Here, we will find the price of 1 metre of cloth using the information given in the question. We will find the improper fraction representation of \[6\dfrac{3}{4}\] .Then we will multiply the improper fraction with the price per metre of the cloth to find cost of \[6\dfrac{3}{4}\] m of cloth.
Complete step-by-step answer:
We know the cost of 22.5 metres of cloth. We will use the unitary method to find out the cost of \[6\dfrac{3}{4}\] metres of cloth.
First, we will find the cost of 1 metre of cloth. As 22.5 metres of cloth costs Rs. 1350 dividing 1350 by 22.5 will give us the price of cloth per metre.
Cost of 1 metre cloth \[ = \dfrac{{1350}}{{22.5}}\]
We will remove the decimal in the denominator by multiplying the numerator by 10:
\[ \Rightarrow \] Cost of 1 metre cloth \[ = \dfrac{{13500}}{{225}}\]
Factorizing the numerator and denominator, we get
\[ \Rightarrow \] Cost of 1 metre cloth \[ = \dfrac{{60 \times 9 \times 25}}{{9 \times 25}}\]
We will cancel out the common factors and find the price of 1 metre of cloth. Therefore, we get
\[ \Rightarrow \] Cost of 1 metre cloth \[ = 60\]
The price of 1 metre of cloth is Rs. 60.
We need to find the price of \[6\dfrac{3}{4}\] metres of cloth. First, we will convert \[6\dfrac{3}{4}\] into an improper fraction. We will substitute 6 for \[a\] , 3 for \[b\] and 4 for \[c\] in the formula \[\dfrac{{ac + b}}{c}\] to convert a mixed fraction into an improper fraction:
\[\begin{array}{l}6\dfrac{3}{4} = \dfrac{{\left( {6 \times 4} \right) + 3}}{4}\\ \Rightarrow 6\dfrac{3}{4} = \dfrac{{27}}{4}\end{array}\]
We need to find the price of \[\dfrac{{27}}{4}\] metres of cloth. We will multiply price of 1 metre of cloth by \[\dfrac{{27}}{4}\] :
Cost of \[\dfrac{{27}}{4}\] metre cloth \[ = \dfrac{{27}}{4} \times 60\]
Simplifying the terms, we get
\[ \Rightarrow \]Cost of \[\dfrac{{27}}{4}\] metre cloth \[ = 27 \times 15 = 405\]
$\therefore $ The price of \[6\dfrac{3}{4}\] metres of cloth is 405 rupees.
Note: We can also find the price by using the formula \[\dfrac{{x \times p}}{l}\] where \[x\] is the length of cloth whose price has to be found and \[p\] is the price of cloth of length \[l\] :
\[\begin{array}{l}{\rm{price}} = \dfrac{{\dfrac{{27}}{4} \times 1350}}{{22.5}}\\ \Rightarrow {\rm{price}} = 405\end{array}\]
To convert a mixed fraction into an improper fraction, we need to multiply the whole number with the denominator and add the numerator. The result obtained will be the numerator of the required improper fraction and its denominator will be the same as the denominator of the mixed fraction; that is \[a\dfrac{b}{c}\] is equivalent to the improper fraction \[\dfrac{{ac + b}}{c}\] .
Complete step-by-step answer:
We know the cost of 22.5 metres of cloth. We will use the unitary method to find out the cost of \[6\dfrac{3}{4}\] metres of cloth.
First, we will find the cost of 1 metre of cloth. As 22.5 metres of cloth costs Rs. 1350 dividing 1350 by 22.5 will give us the price of cloth per metre.
Cost of 1 metre cloth \[ = \dfrac{{1350}}{{22.5}}\]
We will remove the decimal in the denominator by multiplying the numerator by 10:
\[ \Rightarrow \] Cost of 1 metre cloth \[ = \dfrac{{13500}}{{225}}\]
Factorizing the numerator and denominator, we get
\[ \Rightarrow \] Cost of 1 metre cloth \[ = \dfrac{{60 \times 9 \times 25}}{{9 \times 25}}\]
We will cancel out the common factors and find the price of 1 metre of cloth. Therefore, we get
\[ \Rightarrow \] Cost of 1 metre cloth \[ = 60\]
The price of 1 metre of cloth is Rs. 60.
We need to find the price of \[6\dfrac{3}{4}\] metres of cloth. First, we will convert \[6\dfrac{3}{4}\] into an improper fraction. We will substitute 6 for \[a\] , 3 for \[b\] and 4 for \[c\] in the formula \[\dfrac{{ac + b}}{c}\] to convert a mixed fraction into an improper fraction:
\[\begin{array}{l}6\dfrac{3}{4} = \dfrac{{\left( {6 \times 4} \right) + 3}}{4}\\ \Rightarrow 6\dfrac{3}{4} = \dfrac{{27}}{4}\end{array}\]
We need to find the price of \[\dfrac{{27}}{4}\] metres of cloth. We will multiply price of 1 metre of cloth by \[\dfrac{{27}}{4}\] :
Cost of \[\dfrac{{27}}{4}\] metre cloth \[ = \dfrac{{27}}{4} \times 60\]
Simplifying the terms, we get
\[ \Rightarrow \]Cost of \[\dfrac{{27}}{4}\] metre cloth \[ = 27 \times 15 = 405\]
$\therefore $ The price of \[6\dfrac{3}{4}\] metres of cloth is 405 rupees.
Note: We can also find the price by using the formula \[\dfrac{{x \times p}}{l}\] where \[x\] is the length of cloth whose price has to be found and \[p\] is the price of cloth of length \[l\] :
\[\begin{array}{l}{\rm{price}} = \dfrac{{\dfrac{{27}}{4} \times 1350}}{{22.5}}\\ \Rightarrow {\rm{price}} = 405\end{array}\]
To convert a mixed fraction into an improper fraction, we need to multiply the whole number with the denominator and add the numerator. The result obtained will be the numerator of the required improper fraction and its denominator will be the same as the denominator of the mixed fraction; that is \[a\dfrac{b}{c}\] is equivalent to the improper fraction \[\dfrac{{ac + b}}{c}\] .
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Trending doubts
Bluebaby syndrome is caused by A Cadmium pollution class 7 biology CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

Write a summary of the poem the quality of mercy by class 7 english CBSE

Write a letter to the editor of the national daily class 7 english CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE


