If \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] and \[{\text{A + 2B = }}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right]\] then find B-
A)$\left[ {\begin{array}{*{20}{c}}
8&{ - 1}&2 \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$ B)$\left[ {\begin{array}{*{20}{c}}
8&1&2 \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$ C) $\left[ {\begin{array}{*{20}{c}}
8&1&{ - 2} \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$ D) $\left[ {\begin{array}{*{20}{c}}
8&1&2 \\
1&{10}&1
\end{array}} \right]$
Answer
Verified
474.6k+ views
Hint: To find the value of B, first multiply \[{\text{A + 2B = }}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right]\] by 2 on both sides then subtract the given \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] from the obtained multiplication result. You will get the value of B.
Complete step by step answer:
Given, \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] ---- (i)
And \[{\text{A + 2B = }}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right]\]----- (ii)
Here, the matrices given are of order $\left( {2 \times 3} \right)$ .We have to find B. First we multiply eq. (ii) by 2 on both sides,
\[
\Rightarrow {\text{2}}\left( {{\text{A + 2B}}} \right){\text{ = 2}}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right] \\
\Rightarrow 2{\text{A + 4B = }}\left[ {\begin{array}{*{20}{c}}
{10}&0&6 \\
2&{12}&4
\end{array}} \right] \\
\]
Now on subtracting eq. (i) from the obtained result, we have
$
\Rightarrow 2{\text{A + 4B - }}\left( {2{\text{A + 3B}}} \right) = \left[ {\begin{array}{*{20}{c}}
{10}&0&6 \\
2&{12}&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right] \\
\Rightarrow {\text{2A + 4B - 2A - 3B = }}\left[ {\begin{array}{*{20}{c}}
{10 - 2}&{0 - \left( { - 1} \right)}&{6 - 4} \\
{2 - 3}&{12 - 2}&{4 - 5}
\end{array}} \right] \\
$
On solving the above expression, we get
$ \Rightarrow {\text{B = }}\left[ {\begin{array}{*{20}{c}}
8&1&2 \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$
Hence, the correct answer is ‘B’.
Note: Here, the order of matrices is $\left( {2 \times 3} \right)$ because order=number of rows × number of columns. Also, since the order of both matrices [the obtained one and eq.(i)] is the same, so we can subtract the elements in the same position easily and obtain the matrix of the same order.
5&0&3 \\
1&6&2
\end{array}} \right]\] by 2 on both sides then subtract the given \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] from the obtained multiplication result. You will get the value of B.
Complete step by step answer:
Given, \[2{\text{A + 3B = }}\left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right]\] ---- (i)
And \[{\text{A + 2B = }}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right]\]----- (ii)
Here, the matrices given are of order $\left( {2 \times 3} \right)$ .We have to find B. First we multiply eq. (ii) by 2 on both sides,
\[
\Rightarrow {\text{2}}\left( {{\text{A + 2B}}} \right){\text{ = 2}}\left[ {\begin{array}{*{20}{c}}
5&0&3 \\
1&6&2
\end{array}} \right] \\
\Rightarrow 2{\text{A + 4B = }}\left[ {\begin{array}{*{20}{c}}
{10}&0&6 \\
2&{12}&4
\end{array}} \right] \\
\]
Now on subtracting eq. (i) from the obtained result, we have
$
\Rightarrow 2{\text{A + 4B - }}\left( {2{\text{A + 3B}}} \right) = \left[ {\begin{array}{*{20}{c}}
{10}&0&6 \\
2&{12}&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
2&{ - 1}&4 \\
3&2&5
\end{array}} \right] \\
\Rightarrow {\text{2A + 4B - 2A - 3B = }}\left[ {\begin{array}{*{20}{c}}
{10 - 2}&{0 - \left( { - 1} \right)}&{6 - 4} \\
{2 - 3}&{12 - 2}&{4 - 5}
\end{array}} \right] \\
$
On solving the above expression, we get
$ \Rightarrow {\text{B = }}\left[ {\begin{array}{*{20}{c}}
8&1&2 \\
{ - 1}&{10}&{ - 1}
\end{array}} \right]$
Hence, the correct answer is ‘B’.
Note: Here, the order of matrices is $\left( {2 \times 3} \right)$ because order=number of rows × number of columns. Also, since the order of both matrices [the obtained one and eq.(i)] is the same, so we can subtract the elements in the same position easily and obtain the matrix of the same order.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2024-25)
Academic year 2024-25
ENGLISH
Unlimited access till final school exam
School Full course for CBSE students
Physics
Chemistry
Maths
₹35,000 per year
Recently Updated Pages
How is Abiogenesis Theory Disproved Experimentally?
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Master Class 9 Maths: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
State the laws of reflection of light