Answer
Verified
500.1k+ views
Hint: Assume a circle and apply the condition to tangency on the given line to this assumed circle. Compare this equation with the equation given in the question.
Complete step by step solution:
Let us consider a circle having its equation ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{a}^{2}}$. The circle is in its standard form. So its centre is $\left( h,k \right)$ and radius $=a$.
Since line \[lx+my+1=0\] touches this circle, the perpendicular distance from centre of the circle ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{a}^{2}}$ to the line \[lx+my+1=0\] is equal to radius.
To find the perpendicular distance from a point $\left( {{x}_{1}},{{y}_{1}} \right)$ to a line \[ax+by+c=0\], the formula to find this perpendicular distance $'d'$ is given by
$d=\dfrac{\left| a{{x}_{1}}+b{{y}_{1}}+c \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}........\left( i \right)$
Using formula $\left( i \right)$ to find perpendicular distance by substituting $a=l\text{,}b=m,c=1\text{, }{{x}_{1}}=h,{{y}_{1}}=k$ in equation $\left( i \right)$, we get 🡪
$d=\dfrac{\left| lh+mk+1 \right|}{\sqrt{{{l}^{2}}+{{m}^{2}}}}$
As explained in the above paragraph, this distance should be equal to the radius of the circle.
So, $d=a$
Since we have found that $d=\dfrac{\left| lh+mk+1 \right|}{\sqrt{{{l}^{2}}+{{m}^{2}}}}$, hence 🡪
$\dfrac{\left| lh+mk+1 \right|}{\sqrt{{{l}^{2}}+{{m}^{2}}}}=a$
Squaring both sides, we get 🡪
\[\dfrac{{{\left( lh+mk+1 \right)}^{2}}}{{{l}^{2}}+{{m}^{2}}}={{a}^{2}}\]
$\Rightarrow {{l}^{2}}{{h}^{2}}+{{m}^{2}}{{k}^{2}}+1+2lh+2mk+2lhmk={{a}^{2}}\left( {{l}^{2}}+{{m}^{2}} \right)$
$\Rightarrow {{l}^{2}}{{h}^{2}}+{{m}^{2}}{{k}^{2}}+1+2lh+2mk+2lhmk={{a}^{2}}{{l}^{2}}+{{a}^{2}}{{m}^{2}}$
$\Rightarrow \left( {{l}^{2}}{{h}^{2}}-{{a}^{2}}{{l}^{2}} \right)+\left( {{m}^{2}}{{k}^{2}}-{{a}^{2}}{{m}^{2}} \right)+1+2lh+2mk+2lhmk=$
$\Rightarrow {{l}^{2}}\left( {{h}^{2}}-{{a}^{2}} \right)+{{m}^{2}}\left( {{k}^{2}}-{{a}^{2}} \right)+2hklm+2hl+2km+1=0.............\left( ii \right)$
It is given in question;
$4{{l}^{2}}-5{{m}^{2}}+6l+1=0......\left( iii \right)$
So we have to compare the equations $\left( ii \right)$ and $\left( iii \right)$. To compare two equations, we have to equate the ratio of coefficient of same and common variable in the two equations.
I)Equating ratio of coefficients of \[l\] in equations $\left( ii \right)$ and $\left( iii \right)$ to the ratio of constant terms in equations $\left( ii \right)$ and $\left( iii \right)$ 🡪
$\begin{align}
& \dfrac{2h}{6}=\dfrac{1}{1} \\
& \Rightarrow h=\dfrac{6}{2} \\
& \Rightarrow h=3 \\
\end{align}$
II) Equating ratio of coefficients of \[m\] in equations $\left( ii \right)$ and $\left( iii \right)$ to the ratio
of constant terms in equations $\left( ii \right)$ and $\left( iii \right)$ 🡪$\begin{align}
& \left( \dfrac{2k}{0} \right)=\dfrac{1}{1} \\
& \Rightarrow k=0 \\
\end{align}$
III)Equating ratio of coefficients of $'{{l}^{2}}'$ in equations $\left( ii \right)$ and $\left( iii \right)$ to the ratio of constant terms in equations $\left( ii \right)$ and $\left( iii \right)$ 🡪
$\begin{align}
& \dfrac{{{h}^{2}}-{{a}^{2}}}{4}=\dfrac{1}{1} \\
& \Rightarrow {{h}^{2}}-{{a}^{2}}=4 \\
& \Rightarrow {{\left( 3 \right)}^{2}}-{{a}^{2}}=4 \\
& \Rightarrow {{a}^{2}}=9-4 \\
& \Rightarrow {{a}^{2}}=5 \\
& \Rightarrow a=\sqrt{5} \\
\end{align}$
Since there exists a single value of \[h,\text{ }k,\text{ }a\], the circle is a fixed circle. Also, substituting
\[h=3,k=0,a=\sqrt{5}\] in the assumed circle’s equation i.e. ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{a}^{2}}$, we get the equation of circle 🡪
${{\left( x-3 \right)}^{2}}+{{\left( y-0 \right)}^{2}}={{\sqrt{5}}^{2}}$
${{\left( x-3 \right)}^{2}}+{{y}^{2}}=5$
Note: There is a possibility of committing mistakes while equating the coefficient ratio. So, in order to avoid this mistake, first collect all the terms of which we have to find the coefficient and then take the coefficient out of that term.
Let us consider a circle having its equation ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{a}^{2}}$. The circle is in its standard form. So its centre is $\left( h,k \right)$ and radius $=a$.
Since line \[lx+my+1=0\] touches this circle, the perpendicular distance from centre of the circle ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{a}^{2}}$ to the line \[lx+my+1=0\] is equal to radius.
To find the perpendicular distance from a point $\left( {{x}_{1}},{{y}_{1}} \right)$ to a line \[ax+by+c=0\], the formula to find this perpendicular distance $'d'$ is given by
$d=\dfrac{\left| a{{x}_{1}}+b{{y}_{1}}+c \right|}{\sqrt{{{a}^{2}}+{{b}^{2}}}}........\left( i \right)$
Using formula $\left( i \right)$ to find perpendicular distance by substituting $a=l\text{,}b=m,c=1\text{, }{{x}_{1}}=h,{{y}_{1}}=k$ in equation $\left( i \right)$, we get 🡪
$d=\dfrac{\left| lh+mk+1 \right|}{\sqrt{{{l}^{2}}+{{m}^{2}}}}$
As explained in the above paragraph, this distance should be equal to the radius of the circle.
So, $d=a$
Since we have found that $d=\dfrac{\left| lh+mk+1 \right|}{\sqrt{{{l}^{2}}+{{m}^{2}}}}$, hence 🡪
$\dfrac{\left| lh+mk+1 \right|}{\sqrt{{{l}^{2}}+{{m}^{2}}}}=a$
Squaring both sides, we get 🡪
\[\dfrac{{{\left( lh+mk+1 \right)}^{2}}}{{{l}^{2}}+{{m}^{2}}}={{a}^{2}}\]
$\Rightarrow {{l}^{2}}{{h}^{2}}+{{m}^{2}}{{k}^{2}}+1+2lh+2mk+2lhmk={{a}^{2}}\left( {{l}^{2}}+{{m}^{2}} \right)$
$\Rightarrow {{l}^{2}}{{h}^{2}}+{{m}^{2}}{{k}^{2}}+1+2lh+2mk+2lhmk={{a}^{2}}{{l}^{2}}+{{a}^{2}}{{m}^{2}}$
$\Rightarrow \left( {{l}^{2}}{{h}^{2}}-{{a}^{2}}{{l}^{2}} \right)+\left( {{m}^{2}}{{k}^{2}}-{{a}^{2}}{{m}^{2}} \right)+1+2lh+2mk+2lhmk=$
$\Rightarrow {{l}^{2}}\left( {{h}^{2}}-{{a}^{2}} \right)+{{m}^{2}}\left( {{k}^{2}}-{{a}^{2}} \right)+2hklm+2hl+2km+1=0.............\left( ii \right)$
It is given in question;
$4{{l}^{2}}-5{{m}^{2}}+6l+1=0......\left( iii \right)$
So we have to compare the equations $\left( ii \right)$ and $\left( iii \right)$. To compare two equations, we have to equate the ratio of coefficient of same and common variable in the two equations.
I)Equating ratio of coefficients of \[l\] in equations $\left( ii \right)$ and $\left( iii \right)$ to the ratio of constant terms in equations $\left( ii \right)$ and $\left( iii \right)$ 🡪
$\begin{align}
& \dfrac{2h}{6}=\dfrac{1}{1} \\
& \Rightarrow h=\dfrac{6}{2} \\
& \Rightarrow h=3 \\
\end{align}$
II) Equating ratio of coefficients of \[m\] in equations $\left( ii \right)$ and $\left( iii \right)$ to the ratio
of constant terms in equations $\left( ii \right)$ and $\left( iii \right)$ 🡪$\begin{align}
& \left( \dfrac{2k}{0} \right)=\dfrac{1}{1} \\
& \Rightarrow k=0 \\
\end{align}$
III)Equating ratio of coefficients of $'{{l}^{2}}'$ in equations $\left( ii \right)$ and $\left( iii \right)$ to the ratio of constant terms in equations $\left( ii \right)$ and $\left( iii \right)$ 🡪
$\begin{align}
& \dfrac{{{h}^{2}}-{{a}^{2}}}{4}=\dfrac{1}{1} \\
& \Rightarrow {{h}^{2}}-{{a}^{2}}=4 \\
& \Rightarrow {{\left( 3 \right)}^{2}}-{{a}^{2}}=4 \\
& \Rightarrow {{a}^{2}}=9-4 \\
& \Rightarrow {{a}^{2}}=5 \\
& \Rightarrow a=\sqrt{5} \\
\end{align}$
Since there exists a single value of \[h,\text{ }k,\text{ }a\], the circle is a fixed circle. Also, substituting
\[h=3,k=0,a=\sqrt{5}\] in the assumed circle’s equation i.e. ${{\left( x-h \right)}^{2}}+{{\left( y-k \right)}^{2}}={{a}^{2}}$, we get the equation of circle 🡪
${{\left( x-3 \right)}^{2}}+{{\left( y-0 \right)}^{2}}={{\sqrt{5}}^{2}}$
${{\left( x-3 \right)}^{2}}+{{y}^{2}}=5$
Note: There is a possibility of committing mistakes while equating the coefficient ratio. So, in order to avoid this mistake, first collect all the terms of which we have to find the coefficient and then take the coefficient out of that term.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE