Answer
Verified
471k+ views
Hint: To find the required probability, first we will consider the event $E$ that none of trucks chosen will meet emission standards. We will find the required probability by using the definition. That is, required probability $ = \dfrac{{n\left( E \right)}}{{n\left( S \right)}}$ where $n\left( E \right)$ is the number of favourable (desired) outcomes and $n\left( S \right)$ is the number of total outcomes.
Complete step-by-step answer:
In this problem, it is given that $5$ trucks out of $10$ delivery trucks do not meet emission standard. Also given that $3$ trucks are selected for inspection. Therefore, we can write the given information in the following way:
Total number of delivery trucks $ = 10$
Total number of trucks which do not meet emission standard $ = 5$
Total number of selected trucks $ = 3$
Let us consider the event $E$ that none of trucks chosen will meet emission standards. That is, all selected trucks will not meet emission standards. There are $5$ trucks which do not meet emission standard and we need to select $3$ trucks for inspection. We know that the number of ways of selecting $3$ trucks out of $5$ trucks is given by ${}^5{C_3}$. So, we can say that the total number of favourable outcomes is ${}^5{C_3}$. That is, $n\left( E \right) = {}^5{C_3}$.
There are total $10$ trucks and we need to select $3$ trucks for inspection. We know that the number of ways of selecting $3$ trucks out of $10$ trucks is given by ${}^{10}{C_3}$. So, we can say that the total number of outcomes is ${}^{10}{C_3}$. That is, $n\left( S \right) = {}^{10}{C_3}$.
Now we are going to find the probability of an event $E$ by using the definition. That is,
$P$( none of trucks chosen will meet emission standards ) $ = P\left( E \right) = \dfrac{{n\left( E \right)}}{{n\left( S \right)}}$
$ \Rightarrow P\left( E \right) = \dfrac{{{}^5{C_3}}}{{{}^{10}{C_3}}}$
Let us find ${}^5{C_3}$ and ${}^{10}{C_3}$ by using the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Therefore, we get
${}^5{C_3} = \dfrac{{5!}}{{\left( {3!} \right) \times \left( {5 - 3} \right)!}} = \dfrac{{1 \times 2 \times 3 \times 4 \times 5}}{{\left( {1 \times 2 \times 3} \right) \times 2!}} = \dfrac{{4 \times 5}}{{1 \times 2}} = \dfrac{{20}}{2} = 10$ and
${}^{10}{C_3} = \dfrac{{10!}}{{\left( {3!} \right) \times \left( {10 - 3} \right)!}} = \dfrac{{10!}}{{\left( {3!} \right) \times 7!}} = \dfrac{{\left( {7!} \right) \times \left( {8 \times 9 \times 10} \right)}}{{\left( {1 \times 2 \times 3} \right) \times 7!}} = 120$
Let us substitute these values in $P\left( E \right) = \dfrac{{{}^5{C_3}}}{{{}^{10}{C_3}}}$. Therefore, we get $P\left( E \right) = \dfrac{{10}}{{120}} = \dfrac{1}{{12}}$. Therefore, the probability that none of the trucks chosen will meet emission standards is $\dfrac{1}{{12}}$.
Therefore, option C is correct.
Note: For any event $A$, we can write $0 \leqslant P\left( A \right) \leqslant 1$ where $P\left( A \right)$ is the probability of event $A$. The sum of probabilities of all possible outcomes is always $1$. These are the properties of basic probability theory.
Complete step-by-step answer:
In this problem, it is given that $5$ trucks out of $10$ delivery trucks do not meet emission standard. Also given that $3$ trucks are selected for inspection. Therefore, we can write the given information in the following way:
Total number of delivery trucks $ = 10$
Total number of trucks which do not meet emission standard $ = 5$
Total number of selected trucks $ = 3$
Let us consider the event $E$ that none of trucks chosen will meet emission standards. That is, all selected trucks will not meet emission standards. There are $5$ trucks which do not meet emission standard and we need to select $3$ trucks for inspection. We know that the number of ways of selecting $3$ trucks out of $5$ trucks is given by ${}^5{C_3}$. So, we can say that the total number of favourable outcomes is ${}^5{C_3}$. That is, $n\left( E \right) = {}^5{C_3}$.
There are total $10$ trucks and we need to select $3$ trucks for inspection. We know that the number of ways of selecting $3$ trucks out of $10$ trucks is given by ${}^{10}{C_3}$. So, we can say that the total number of outcomes is ${}^{10}{C_3}$. That is, $n\left( S \right) = {}^{10}{C_3}$.
Now we are going to find the probability of an event $E$ by using the definition. That is,
$P$( none of trucks chosen will meet emission standards ) $ = P\left( E \right) = \dfrac{{n\left( E \right)}}{{n\left( S \right)}}$
$ \Rightarrow P\left( E \right) = \dfrac{{{}^5{C_3}}}{{{}^{10}{C_3}}}$
Let us find ${}^5{C_3}$ and ${}^{10}{C_3}$ by using the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Therefore, we get
${}^5{C_3} = \dfrac{{5!}}{{\left( {3!} \right) \times \left( {5 - 3} \right)!}} = \dfrac{{1 \times 2 \times 3 \times 4 \times 5}}{{\left( {1 \times 2 \times 3} \right) \times 2!}} = \dfrac{{4 \times 5}}{{1 \times 2}} = \dfrac{{20}}{2} = 10$ and
${}^{10}{C_3} = \dfrac{{10!}}{{\left( {3!} \right) \times \left( {10 - 3} \right)!}} = \dfrac{{10!}}{{\left( {3!} \right) \times 7!}} = \dfrac{{\left( {7!} \right) \times \left( {8 \times 9 \times 10} \right)}}{{\left( {1 \times 2 \times 3} \right) \times 7!}} = 120$
Let us substitute these values in $P\left( E \right) = \dfrac{{{}^5{C_3}}}{{{}^{10}{C_3}}}$. Therefore, we get $P\left( E \right) = \dfrac{{10}}{{120}} = \dfrac{1}{{12}}$. Therefore, the probability that none of the trucks chosen will meet emission standards is $\dfrac{1}{{12}}$.
Therefore, option C is correct.
Note: For any event $A$, we can write $0 \leqslant P\left( A \right) \leqslant 1$ where $P\left( A \right)$ is the probability of event $A$. The sum of probabilities of all possible outcomes is always $1$. These are the properties of basic probability theory.
Recently Updated Pages
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE