Answer
Verified
459.6k+ views
Hint: First we will find the number of ways to choose vowels and consonants separately by using the formula of combination, which is given by
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Where, $n=$ number of items/objects
And $r=$ number of items/objects being chosen at a time
Then, we find the number of ways to choose both vowels and consonants. Then, find the number of ways to arrange them to form 6 letter words. Then, multiply the obtained numbers to get the desired result.
Complete step by step answer:
We have given 5 vowels and 6 consonants.
Then, we have to find how many 6 letter words can be formed with 3 vowels and 3 consonants.
Now, we need to choose 3 vowels from the given 5 vowels. So, the number of ways to choose vowels will be
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
&\Rightarrow {}^{5}{{C}_{3}}=\dfrac{5!}{3!\left( 5-3 \right)!} \\
&\Rightarrow {}^{5}{{C}_{3}}=\dfrac{5\times 4\times 3!}{3!\left( 2 \right)!} \\
&\Rightarrow {}^{5}{{C}_{3}}=\dfrac{5\times 4}{2\times 1} \\
&\Rightarrow {}^{5}{{C}_{3}}=\dfrac{20}{2} \\
&\Rightarrow {}^{5}{{C}_{3}}=10 \\
\end{align}\]
Now, we have to find the number of ways to choose 3 consonants from the given 6 consonants, we get
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
&\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!\left( 6-3 \right)!} \\
& \Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4\times 3!}{3!\left( 3 \right)!} \\
& \Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4}{3\times 2\times 1} \\
&\Rightarrow {}^{6}{{C}_{3}}=\dfrac{120}{6} \\
&\Rightarrow {}^{6}{{C}_{3}}=20 \\
\end{align}\]
Now, we have to find the number of ways to select both vowels and consonants.
We have \[{}^{5}{{C}_{3}}=10\] and \[{}^{6}{{C}_{3}}=20\], so number of ways to choose both will be
\[\begin{align}
& {}^{5}{{C}_{3}}\times {}^{6}{{C}_{3}}=20\times 10 \\
& {}^{5}{{C}_{3}}\times {}^{6}{{C}_{3}}=200 \\
\end{align}\]
Now, we have to form 6 letter words by arranging this vowels and consonants. So, 6 letters are arranged in $6!$ ways.
So, the total number of words that can be formed will be
$\begin{align}
& 6!\times 200 \\
& =6\times 5\times 4\times 3\times 2\times 1\times 200 \\
& =144000 \\
\end{align}$
So, total $144000$ words can be formed.
Note: There is a possibility that students may forget to arrange 6 letters to form a word and give the answer as $200$, which is an incorrect answer. Each arrangement of 6 letters gives different words so it is necessary to arrange them within themselves. Also, there is a difference between permutation and combination. Combination means only choosing while permutation means first choosing then arranging.
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
Where, $n=$ number of items/objects
And $r=$ number of items/objects being chosen at a time
Then, we find the number of ways to choose both vowels and consonants. Then, find the number of ways to arrange them to form 6 letter words. Then, multiply the obtained numbers to get the desired result.
Complete step by step answer:
We have given 5 vowels and 6 consonants.
Then, we have to find how many 6 letter words can be formed with 3 vowels and 3 consonants.
Now, we need to choose 3 vowels from the given 5 vowels. So, the number of ways to choose vowels will be
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
&\Rightarrow {}^{5}{{C}_{3}}=\dfrac{5!}{3!\left( 5-3 \right)!} \\
&\Rightarrow {}^{5}{{C}_{3}}=\dfrac{5\times 4\times 3!}{3!\left( 2 \right)!} \\
&\Rightarrow {}^{5}{{C}_{3}}=\dfrac{5\times 4}{2\times 1} \\
&\Rightarrow {}^{5}{{C}_{3}}=\dfrac{20}{2} \\
&\Rightarrow {}^{5}{{C}_{3}}=10 \\
\end{align}\]
Now, we have to find the number of ways to choose 3 consonants from the given 6 consonants, we get
\[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]
\[\begin{align}
&\Rightarrow {}^{6}{{C}_{3}}=\dfrac{6!}{3!\left( 6-3 \right)!} \\
& \Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4\times 3!}{3!\left( 3 \right)!} \\
& \Rightarrow {}^{6}{{C}_{3}}=\dfrac{6\times 5\times 4}{3\times 2\times 1} \\
&\Rightarrow {}^{6}{{C}_{3}}=\dfrac{120}{6} \\
&\Rightarrow {}^{6}{{C}_{3}}=20 \\
\end{align}\]
Now, we have to find the number of ways to select both vowels and consonants.
We have \[{}^{5}{{C}_{3}}=10\] and \[{}^{6}{{C}_{3}}=20\], so number of ways to choose both will be
\[\begin{align}
& {}^{5}{{C}_{3}}\times {}^{6}{{C}_{3}}=20\times 10 \\
& {}^{5}{{C}_{3}}\times {}^{6}{{C}_{3}}=200 \\
\end{align}\]
Now, we have to form 6 letter words by arranging this vowels and consonants. So, 6 letters are arranged in $6!$ ways.
So, the total number of words that can be formed will be
$\begin{align}
& 6!\times 200 \\
& =6\times 5\times 4\times 3\times 2\times 1\times 200 \\
& =144000 \\
\end{align}$
So, total $144000$ words can be formed.
Note: There is a possibility that students may forget to arrange 6 letters to form a word and give the answer as $200$, which is an incorrect answer. Each arrangement of 6 letters gives different words so it is necessary to arrange them within themselves. Also, there is a difference between permutation and combination. Combination means only choosing while permutation means first choosing then arranging.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is pollution? How many types of pollution? Define it
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE