Answer
Verified
449.7k+ views
Hint: When the mixture is heated, the gases which will be left are chlorine and oxygen. We are given that this is then passed through caustic soda, which will absorb all the chlorine. As we are given the volume after this process, we can find moles of oxygen by comparing it to the initial process, and then find the total molecular mass.
Complete step by step answer:
After heating the mixture, chlorine gas will remain as it is while the oxide will decompose to chlorine and oxygen. As they are of equal volume in the beginning, the chlorine gas and the chlorine oxide will occupy $\dfrac{60mL}{2} = 30mL$ each. Let $n$ denote the number of atoms of oxygen in the oxide. Thus, we can write a general formula for the oxide as $C{l_2}{O_n}$ . We can write a general equation for the decomposition from the data we’re given as:
$C{l_2} + C{l_2}{O_n}\xrightarrow{\Delta }2C{l_2} + (n/2){O_2}$
We know that one molecule of chlorine occupies $30mL$. Therefore, after the heating, the two molecules of chlorine will occupy a combined volume of $60mL$. As the oxide is a gas, the volume occupied by the $n$ atoms of oxygen will also be $30mL$. Hence, after heating when this has been converted to molecular oxygen, $\dfrac{n}{2}$ moles will occupy a volume of $\dfrac{30n}{2} = 15n$.
Now, after passing through the caustic soda solution, all of the chlorine will be absorbed and we are left with only the oxygen gas. The volume of this is given as $15mL$ . Hence, equating the volume of oxygen we got from the heating to this volume, we get:
$15n = 15 \Rightarrow n = 1$
Substituting the value of $n$ in our general formula of the oxide, we get the oxide to be $C{l_2}O$.
Hence, its molecular mass is:
$(35.5 \times 2) + 16$ since molecular mass of $Cl = 35.5$ and $O = 32$.
Therefore, molar mass of the compound $ = 71 + 16 = 87g/mol$
Thus, the nearest integral value of $x = 87$
Note: Chlorine can form many oxides ranging from acidic to basic, and most of these are unstable and release free chlorine. Hence, they are used as good chlorinating and bleaching agents. Note that the chlorine gas reacts with caustic soda ($NaOH$) to produce sodium chlorate and sodium chloride, both solids, and water. That is why oxygen is the only gaseous compound present after passing the mixture through caustic soda.
Complete step by step answer:
After heating the mixture, chlorine gas will remain as it is while the oxide will decompose to chlorine and oxygen. As they are of equal volume in the beginning, the chlorine gas and the chlorine oxide will occupy $\dfrac{60mL}{2} = 30mL$ each. Let $n$ denote the number of atoms of oxygen in the oxide. Thus, we can write a general formula for the oxide as $C{l_2}{O_n}$ . We can write a general equation for the decomposition from the data we’re given as:
$C{l_2} + C{l_2}{O_n}\xrightarrow{\Delta }2C{l_2} + (n/2){O_2}$
Initial volumes ($mL$) | $30$ | $30$ | $0$ | $0$ | |
Final volumes ($mL$) | $0$ | $0$ | $60$ | $15n$ |
We know that one molecule of chlorine occupies $30mL$. Therefore, after the heating, the two molecules of chlorine will occupy a combined volume of $60mL$. As the oxide is a gas, the volume occupied by the $n$ atoms of oxygen will also be $30mL$. Hence, after heating when this has been converted to molecular oxygen, $\dfrac{n}{2}$ moles will occupy a volume of $\dfrac{30n}{2} = 15n$.
Now, after passing through the caustic soda solution, all of the chlorine will be absorbed and we are left with only the oxygen gas. The volume of this is given as $15mL$ . Hence, equating the volume of oxygen we got from the heating to this volume, we get:
$15n = 15 \Rightarrow n = 1$
Substituting the value of $n$ in our general formula of the oxide, we get the oxide to be $C{l_2}O$.
Hence, its molecular mass is:
$(35.5 \times 2) + 16$ since molecular mass of $Cl = 35.5$ and $O = 32$.
Therefore, molar mass of the compound $ = 71 + 16 = 87g/mol$
Thus, the nearest integral value of $x = 87$
Note: Chlorine can form many oxides ranging from acidic to basic, and most of these are unstable and release free chlorine. Hence, they are used as good chlorinating and bleaching agents. Note that the chlorine gas reacts with caustic soda ($NaOH$) to produce sodium chlorate and sodium chloride, both solids, and water. That is why oxygen is the only gaseous compound present after passing the mixture through caustic soda.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE