
If $ 999x + 888y = 1332 $
$ 888x + 999y = 555 $ then the value of $ x + y = \_\_\_ $
A.1
B.2
C.999
D.None of these
Answer
520.5k+ views
Hint: To find the value of $ x + y $ , we need to solve the given two linear equations and find the values of x and y first. For solving these equations, we are going to use the elimination method. After we get the values of x and y, we just need to add them and we will get our answer.
Complete step-by-step answer:
In this question, we are given a system of equations with 2 linear equations and we need to find the value of $ x + y $ .
Given equations are:
$ 999x + 888y = 1332 $ - - - - - - - - - - - (1)
$ 888x + 999y = 555 $ - - - - - - - - - - - - - (2)
We can take out 111 common in equation (1) and equation (2). Therefore, we get
$ \Rightarrow 111\left( {9x + 8y} \right) = 1332 $
$ \Rightarrow 9x + 8y = 12 $ - - - - - - - - - - (3)
And
$ \Rightarrow 111\left( {8x + 9y} \right) = 555 $
$ \Rightarrow 8x + 9y = 5 $ - - - - - - - - - - - (4)
Now, we can solve these equations using the elimination method.
For that, multiply equation (3) with 8 and equation (4) with 9, we get
$ \Rightarrow \left( {9x + 8y} \right) \times 8 = 12 \times 8 $
$ \Rightarrow 72x + 64y = 96 $ - - - - - - - - (5)
And
$ \Rightarrow \left( {8x + 9y} \right) \times 9 = 5 \times 9 $
$ \Rightarrow 72x + 81y = 45 $ - - - - - - - - (6)
Now, subtract equation (6) from equation (5), we get
\[
\underline
72x + 64y = 96 \\
- 72x - 81y = - 45 \\
\\
0 - 17y = 51 \;
\]
$
\Rightarrow - 17y = 51 \\
\Rightarrow y = - \dfrac{{51}}{{17}} \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 5 + 27 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = \dfrac{{32}}{8} \\
\Rightarrow x = 4 \;
$
Now, we need to find the value of $ x + y $ . Therefore,
$
\Rightarrow x + y = 4 + \left( { - 3} \right) \\
\Rightarrow x + y = 4 - 3 \\
\Rightarrow x + y = 1 \;
$
Hence, our answer is option A.
So, the correct answer is “Option A”.
Note: We can also solve equation (3) and equation (4) using substitution method.
$ \Rightarrow 9x + 8y = 12 $
$ \Rightarrow 8x + 9y = 5 $
Now,
$
\Rightarrow 9x + 8y = 12 \\
\Rightarrow 9x = 12 - 8y \\
\Rightarrow x = \dfrac{{12 - 8y}}{9} \;
$
Now, putting $ x = \dfrac{{12 - 8y}}{9} $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8\left( {\dfrac{{12 - 8y}}{9}} \right) + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y}}{9} + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y + 81y}}{9} = 5 \\
\Rightarrow 96 + 17y = 45 \\
\Rightarrow 17y = 45 - 96 \\
\Rightarrow 17y = - 51 \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = 4 \;
$
Complete step-by-step answer:
In this question, we are given a system of equations with 2 linear equations and we need to find the value of $ x + y $ .
Given equations are:
$ 999x + 888y = 1332 $ - - - - - - - - - - - (1)
$ 888x + 999y = 555 $ - - - - - - - - - - - - - (2)
We can take out 111 common in equation (1) and equation (2). Therefore, we get
$ \Rightarrow 111\left( {9x + 8y} \right) = 1332 $
$ \Rightarrow 9x + 8y = 12 $ - - - - - - - - - - (3)
And
$ \Rightarrow 111\left( {8x + 9y} \right) = 555 $
$ \Rightarrow 8x + 9y = 5 $ - - - - - - - - - - - (4)
Now, we can solve these equations using the elimination method.
For that, multiply equation (3) with 8 and equation (4) with 9, we get
$ \Rightarrow \left( {9x + 8y} \right) \times 8 = 12 \times 8 $
$ \Rightarrow 72x + 64y = 96 $ - - - - - - - - (5)
And
$ \Rightarrow \left( {8x + 9y} \right) \times 9 = 5 \times 9 $
$ \Rightarrow 72x + 81y = 45 $ - - - - - - - - (6)
Now, subtract equation (6) from equation (5), we get
\[
\underline
72x + 64y = 96 \\
- 72x - 81y = - 45 \\
\\
0 - 17y = 51 \;
\]
$
\Rightarrow - 17y = 51 \\
\Rightarrow y = - \dfrac{{51}}{{17}} \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 5 + 27 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = \dfrac{{32}}{8} \\
\Rightarrow x = 4 \;
$
Now, we need to find the value of $ x + y $ . Therefore,
$
\Rightarrow x + y = 4 + \left( { - 3} \right) \\
\Rightarrow x + y = 4 - 3 \\
\Rightarrow x + y = 1 \;
$
Hence, our answer is option A.
So, the correct answer is “Option A”.
Note: We can also solve equation (3) and equation (4) using substitution method.
$ \Rightarrow 9x + 8y = 12 $
$ \Rightarrow 8x + 9y = 5 $
Now,
$
\Rightarrow 9x + 8y = 12 \\
\Rightarrow 9x = 12 - 8y \\
\Rightarrow x = \dfrac{{12 - 8y}}{9} \;
$
Now, putting $ x = \dfrac{{12 - 8y}}{9} $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8\left( {\dfrac{{12 - 8y}}{9}} \right) + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y}}{9} + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y + 81y}}{9} = 5 \\
\Rightarrow 96 + 17y = 45 \\
\Rightarrow 17y = 45 - 96 \\
\Rightarrow 17y = - 51 \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = 4 \;
$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

When people say No pun intended what does that mea class 8 english CBSE

What are the methods of reducing friction. Explain


