Answer
Verified
396.9k+ views
Hint: To find the value of $ x + y $ , we need to solve the given two linear equations and find the values of x and y first. For solving these equations, we are going to use the elimination method. After we get the values of x and y, we just need to add them and we will get our answer.
Complete step-by-step answer:
In this question, we are given a system of equations with 2 linear equations and we need to find the value of $ x + y $ .
Given equations are:
$ 999x + 888y = 1332 $ - - - - - - - - - - - (1)
$ 888x + 999y = 555 $ - - - - - - - - - - - - - (2)
We can take out 111 common in equation (1) and equation (2). Therefore, we get
$ \Rightarrow 111\left( {9x + 8y} \right) = 1332 $
$ \Rightarrow 9x + 8y = 12 $ - - - - - - - - - - (3)
And
$ \Rightarrow 111\left( {8x + 9y} \right) = 555 $
$ \Rightarrow 8x + 9y = 5 $ - - - - - - - - - - - (4)
Now, we can solve these equations using the elimination method.
For that, multiply equation (3) with 8 and equation (4) with 9, we get
$ \Rightarrow \left( {9x + 8y} \right) \times 8 = 12 \times 8 $
$ \Rightarrow 72x + 64y = 96 $ - - - - - - - - (5)
And
$ \Rightarrow \left( {8x + 9y} \right) \times 9 = 5 \times 9 $
$ \Rightarrow 72x + 81y = 45 $ - - - - - - - - (6)
Now, subtract equation (6) from equation (5), we get
\[
\underline
72x + 64y = 96 \\
- 72x - 81y = - 45 \\
\\
0 - 17y = 51 \;
\]
$
\Rightarrow - 17y = 51 \\
\Rightarrow y = - \dfrac{{51}}{{17}} \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 5 + 27 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = \dfrac{{32}}{8} \\
\Rightarrow x = 4 \;
$
Now, we need to find the value of $ x + y $ . Therefore,
$
\Rightarrow x + y = 4 + \left( { - 3} \right) \\
\Rightarrow x + y = 4 - 3 \\
\Rightarrow x + y = 1 \;
$
Hence, our answer is option A.
So, the correct answer is “Option A”.
Note: We can also solve equation (3) and equation (4) using substitution method.
$ \Rightarrow 9x + 8y = 12 $
$ \Rightarrow 8x + 9y = 5 $
Now,
$
\Rightarrow 9x + 8y = 12 \\
\Rightarrow 9x = 12 - 8y \\
\Rightarrow x = \dfrac{{12 - 8y}}{9} \;
$
Now, putting $ x = \dfrac{{12 - 8y}}{9} $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8\left( {\dfrac{{12 - 8y}}{9}} \right) + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y}}{9} + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y + 81y}}{9} = 5 \\
\Rightarrow 96 + 17y = 45 \\
\Rightarrow 17y = 45 - 96 \\
\Rightarrow 17y = - 51 \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = 4 \;
$
Complete step-by-step answer:
In this question, we are given a system of equations with 2 linear equations and we need to find the value of $ x + y $ .
Given equations are:
$ 999x + 888y = 1332 $ - - - - - - - - - - - (1)
$ 888x + 999y = 555 $ - - - - - - - - - - - - - (2)
We can take out 111 common in equation (1) and equation (2). Therefore, we get
$ \Rightarrow 111\left( {9x + 8y} \right) = 1332 $
$ \Rightarrow 9x + 8y = 12 $ - - - - - - - - - - (3)
And
$ \Rightarrow 111\left( {8x + 9y} \right) = 555 $
$ \Rightarrow 8x + 9y = 5 $ - - - - - - - - - - - (4)
Now, we can solve these equations using the elimination method.
For that, multiply equation (3) with 8 and equation (4) with 9, we get
$ \Rightarrow \left( {9x + 8y} \right) \times 8 = 12 \times 8 $
$ \Rightarrow 72x + 64y = 96 $ - - - - - - - - (5)
And
$ \Rightarrow \left( {8x + 9y} \right) \times 9 = 5 \times 9 $
$ \Rightarrow 72x + 81y = 45 $ - - - - - - - - (6)
Now, subtract equation (6) from equation (5), we get
\[
\underline
72x + 64y = 96 \\
- 72x - 81y = - 45 \\
\\
0 - 17y = 51 \;
\]
$
\Rightarrow - 17y = 51 \\
\Rightarrow y = - \dfrac{{51}}{{17}} \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 5 + 27 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = \dfrac{{32}}{8} \\
\Rightarrow x = 4 \;
$
Now, we need to find the value of $ x + y $ . Therefore,
$
\Rightarrow x + y = 4 + \left( { - 3} \right) \\
\Rightarrow x + y = 4 - 3 \\
\Rightarrow x + y = 1 \;
$
Hence, our answer is option A.
So, the correct answer is “Option A”.
Note: We can also solve equation (3) and equation (4) using substitution method.
$ \Rightarrow 9x + 8y = 12 $
$ \Rightarrow 8x + 9y = 5 $
Now,
$
\Rightarrow 9x + 8y = 12 \\
\Rightarrow 9x = 12 - 8y \\
\Rightarrow x = \dfrac{{12 - 8y}}{9} \;
$
Now, putting $ x = \dfrac{{12 - 8y}}{9} $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8\left( {\dfrac{{12 - 8y}}{9}} \right) + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y}}{9} + 9y = 5 \\
\Rightarrow \dfrac{{96 - 64y + 81y}}{9} = 5 \\
\Rightarrow 96 + 17y = 45 \\
\Rightarrow 17y = 45 - 96 \\
\Rightarrow 17y = - 51 \\
\Rightarrow y = - 3 \;
$
Now, putting $ y = - 3 $ in equation (4), we get
$
\Rightarrow 8x + 9y = 5 \\
\Rightarrow 8x + 9\left( { - 3} \right) = 5 \\
\Rightarrow 8x - 27 = 5 \\
\Rightarrow 8x = 32 \\
\Rightarrow x = 4 \;
$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers