Answer
Verified
497.1k+ views
Hint: Use the fact that ${}^{n}{{P}_{r}}=\dfrac{n!}{\left( n-r \right)!}$ and $0\le r\le n$. Calculate the values of ${}^{9}{{P}_{5}}$ and ${}^{9}{{P}_{4}}$ ,hence determine the value of LHS. Now start by substituting r = 0,1,2,3, … till LHS = RHS.
Complete step-by-step answer:
$\begin{align}
& {}^{9}{{P}_{5}}=\dfrac{9!}{\left( 9-5 \right)!}=\dfrac{9!}{4!}=\dfrac{9\times 8\times 7\times 6\times 5\times 4!}{4!}=9\times 8\times 7\times 6\times 5=15120 \\
& {}^{9}{{P}_{4}}=\dfrac{9!}{\left( 9-4 \right)!}=\dfrac{9!}{5!}=\dfrac{9\times 8\times 7\times 6\times 5!}{5!}=9\times 8\times 7\times 6=3024 \\
\end{align}$
Hence LHS $=15120+5\times 3024=30240$.
When r = 0, RHS = $\dfrac{10!}{\left( 10-0 \right)!}=1$
When r = 1, RHS = 10
When r = 2 RHS = $10\times 9=90$
When r = 3 RHS = $90\times 8=720$
When r = 4 RHS = $720\times 7=5040$
When r = 5 RHS = $5040\times 6=30240$
Hence, we have when r = 5 LHS = RHS.
Hence r = 5.
Note: Proof by argument:
Number of Permutations of 10 Letters taken 5 at a time = Number of permutations if a particular letter (say A) always occupies the first position + Number of permutations if that particular letter never occupies the first position.
LHS = \[{}^{10}{{P}_{5}}\].
The number of permutations if a particular letter (say A) always occupies the first position = Number of permutations of remaining 9 letter taken 4 at a time = \[{}^{9}{{P}_{4}}\]
The number of permutations if a particular letter never occupies the first position = \[9\times {}^{9}{{P}_{4}}\] Because the first place has 9 choices [NOT TAKING THE PARTICULAR LETTER] and the remaining letters can be arranged in \[{}^{9}{{P}_{4}}\] ways.
Now we know that $\left( n-r+1 \right){}^{n}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Hence, we have
$\begin{align}
& \left( 9-5+1 \right){}^{9}{{P}_{4}}={}^{9}{{P}_{5}} \\
& \Rightarrow 5{}^{9}{{P}_{4}}={}^{9}{{P}_{5}} \\
\end{align}$
Hence \[9{}^{9}{{P}_{4}}=5{}^{9}{{P}_{4}}+4{}^{9}{{P}_{4}}={}^{9}{{P}_{5}}+4{}^{9}{{P}_{4}}\]
Hence, we have
\[\begin{align}
& {}^{10}{{P}_{5}}={}^{9}{{P}_{4}}+{}^{9}{{P}_{5}}+4{}^{9}{{P}_{4}} \\
& \Rightarrow {}^{10}{{P}_{5}}={}^{9}{{P}_{5}}+5{}^{9}{{P}_{4}} \\
\end{align}\]
Complete step-by-step answer:
$\begin{align}
& {}^{9}{{P}_{5}}=\dfrac{9!}{\left( 9-5 \right)!}=\dfrac{9!}{4!}=\dfrac{9\times 8\times 7\times 6\times 5\times 4!}{4!}=9\times 8\times 7\times 6\times 5=15120 \\
& {}^{9}{{P}_{4}}=\dfrac{9!}{\left( 9-4 \right)!}=\dfrac{9!}{5!}=\dfrac{9\times 8\times 7\times 6\times 5!}{5!}=9\times 8\times 7\times 6=3024 \\
\end{align}$
Hence LHS $=15120+5\times 3024=30240$.
When r = 0, RHS = $\dfrac{10!}{\left( 10-0 \right)!}=1$
When r = 1, RHS = 10
When r = 2 RHS = $10\times 9=90$
When r = 3 RHS = $90\times 8=720$
When r = 4 RHS = $720\times 7=5040$
When r = 5 RHS = $5040\times 6=30240$
Hence, we have when r = 5 LHS = RHS.
Hence r = 5.
Note: Proof by argument:
Number of Permutations of 10 Letters taken 5 at a time = Number of permutations if a particular letter (say A) always occupies the first position + Number of permutations if that particular letter never occupies the first position.
LHS = \[{}^{10}{{P}_{5}}\].
The number of permutations if a particular letter (say A) always occupies the first position = Number of permutations of remaining 9 letter taken 4 at a time = \[{}^{9}{{P}_{4}}\]
The number of permutations if a particular letter never occupies the first position = \[9\times {}^{9}{{P}_{4}}\] Because the first place has 9 choices [NOT TAKING THE PARTICULAR LETTER] and the remaining letters can be arranged in \[{}^{9}{{P}_{4}}\] ways.
Now we know that $\left( n-r+1 \right){}^{n}{{P}_{r-1}}={}^{n}{{P}_{r}}$
Hence, we have
$\begin{align}
& \left( 9-5+1 \right){}^{9}{{P}_{4}}={}^{9}{{P}_{5}} \\
& \Rightarrow 5{}^{9}{{P}_{4}}={}^{9}{{P}_{5}} \\
\end{align}$
Hence \[9{}^{9}{{P}_{4}}=5{}^{9}{{P}_{4}}+4{}^{9}{{P}_{4}}={}^{9}{{P}_{5}}+4{}^{9}{{P}_{4}}\]
Hence, we have
\[\begin{align}
& {}^{10}{{P}_{5}}={}^{9}{{P}_{4}}+{}^{9}{{P}_{5}}+4{}^{9}{{P}_{4}} \\
& \Rightarrow {}^{10}{{P}_{5}}={}^{9}{{P}_{5}}+5{}^{9}{{P}_{4}} \\
\end{align}\]
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE