Answer
Verified
460.8k+ views
Hint:
As the sum of all the three angles is \[{{180}^{\circ }}\] , hence it can be inferred from this fact that these are the angles of a triangle as the sum of all the three angles of a triangle is also \[{{180}^{\circ }}\] .
Another important formula that is used in the solution is the formula for finding the tangent or the tan value of the sum of two angles which is as follows
\[\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\]
Complete answer:
As mentioned in the question, we know that these are the angles of a triangle as the sum of all the three angles of a triangle is also \[{{180}^{\circ }}\] .
Now, on using the formula for finding the tangent or the tan value of the sum of two angles as mentioned in the hint, we get
\[\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\ \ \ \ \ ...(a)\]
Now, here we can see that the sum of the two angles can be written as
A+B= \[{{180}^{\circ }}\] - C …(b)
Now, we can use equation (a) and (b) to get
\[\tan ({{180}^{\circ }}-C)=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\ \ \ \ \ ...(c)\]
On using the fact that
\[\tan ({{180}^{\circ }}-C)=\tan C\]
So, on cross multiplying the equation (c) and using the above mentioned fact, we get
\[\begin{align}
& \tan C=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\ \\
& \tan C-\tan A\cdot \tan B\cdot \tan C=\tan A+\tan B \\
& \tan A\cdot \tan B\cdot \tan C=\tan A+\tan B+\tan C\ \ \ \ \ ...(d) \\
\end{align}\]
Now, on comparing equation (d) and the question, we get that value of k is 1.
Note:
In this question, if the students don’t figure out that these are the angles of a triangle as the sum of all the three angles of a triangle is also \[{{180}^{\circ }}\] then the question can become a little tricky and the students can make an error and then they would not get the correct answer.
Also, the property of the tan that is used is also very crucial.
As the sum of all the three angles is \[{{180}^{\circ }}\] , hence it can be inferred from this fact that these are the angles of a triangle as the sum of all the three angles of a triangle is also \[{{180}^{\circ }}\] .
Another important formula that is used in the solution is the formula for finding the tangent or the tan value of the sum of two angles which is as follows
\[\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\]
Complete answer:
As mentioned in the question, we know that these are the angles of a triangle as the sum of all the three angles of a triangle is also \[{{180}^{\circ }}\] .
Now, on using the formula for finding the tangent or the tan value of the sum of two angles as mentioned in the hint, we get
\[\tan (A+B)=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\ \ \ \ \ ...(a)\]
Now, here we can see that the sum of the two angles can be written as
A+B= \[{{180}^{\circ }}\] - C …(b)
Now, we can use equation (a) and (b) to get
\[\tan ({{180}^{\circ }}-C)=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\ \ \ \ \ ...(c)\]
On using the fact that
\[\tan ({{180}^{\circ }}-C)=\tan C\]
So, on cross multiplying the equation (c) and using the above mentioned fact, we get
\[\begin{align}
& \tan C=\dfrac{\tan A+\tan B}{1-\tan A\cdot \tan B}\ \\
& \tan C-\tan A\cdot \tan B\cdot \tan C=\tan A+\tan B \\
& \tan A\cdot \tan B\cdot \tan C=\tan A+\tan B+\tan C\ \ \ \ \ ...(d) \\
\end{align}\]
Now, on comparing equation (d) and the question, we get that value of k is 1.
Note:
In this question, if the students don’t figure out that these are the angles of a triangle as the sum of all the three angles of a triangle is also \[{{180}^{\circ }}\] then the question can become a little tricky and the students can make an error and then they would not get the correct answer.
Also, the property of the tan that is used is also very crucial.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE