Answer
Verified
498.6k+ views
Hint: For independent events, \[P(A \cap B) = P(A).P(B)\] . Hence, we find \[P(A \cap B)\] and then we find \[P(A).P(B)\] and show that they both are equal.
Complete step-by-step answer:
Independent events are events such that probability of occurrence of one of them does not affect the occurrence of the other.
Independent events A and B satisfy the relation as follows:
\[P(A \cap B) = P(A).P(B){\text{ }}..........{\text{(1)}}\]
From the figure, we can observe that the sum of probability of occurrence of the event A and probability of occurrence of event B is equal to the sum of probability of occurrence of both event A and B and probability of occurrence of event A or event B.
\[P(A) + P(B) = P(A \cap B) + P(A \cup B){\text{ }}..........{\text{(2)}}\]
The probabilities of A, B and \[A \cup B\] are given as follows:
\[P(A) = \dfrac{1}{4}\]
\[P(B) = \dfrac{1}{3}\]
\[P(A \cup B) = \dfrac{1}{2}\]
Substituting these in equation (2), we get:
\[\dfrac{1}{4} + \dfrac{1}{3} = P(A \cap B) + \dfrac{1}{2}{\text{ }}\]
Simplifying the left-hand side, we get:
\[\dfrac{{3 + 4}}{{12}} = P(A \cap B) + \dfrac{1}{2}\]
\[\dfrac{7}{{12}} = P(A \cap B) + \dfrac{1}{2}\]
Now, solving for \[P(A \cap B)\] , we get:
\[P(A \cap B) = \dfrac{7}{{12}} - \dfrac{1}{2}\]
Simplifying the right-hand side of the equation, we get:
\[P(A \cap B) = \dfrac{{7 - 6}}{{12}}\]
\[P(A \cap B) = \dfrac{1}{{12}}{\text{ }}..........{\text{(3)}}\]
Hence, we obtained the value of \[P(A \cap B)\] .
Next, we compute the value of the product of probability of A and B.
We have:
\[P(A).P(B) = \dfrac{1}{4}.\dfrac{1}{3}\]
Multiplying the right-hand side of the equation, we have:
\[P(A).P(B) = \dfrac{1}{{12}}{\text{ }}...........{\text{(4)}}\]
From, equation (3) and equation (4), we observe that both the RHS are equal, hence LHS also are equal, we have:
\[P(A).P(B) = P(A \cap B)\]
This is nothing but equation (1), satisfying the condition for independent events.
Hence, we showed that A and B are independent events.
Note: A common mistake you can make is taking \[P(A) + P(B) = 1 = P(A \cup B) + P(A \cap B)\] and proceeding to solve for \[P(A \cap B)\] , which is wrong. You can observe that \[P(A) + P(B) = \dfrac{1}{4} + \dfrac{1}{3} = \dfrac{7}{{12}} \ne 1\] . However, \[P(A) + P(B) = P(A \cup B) + P(A \cap B)\] , always holds true.
Complete step-by-step answer:
Independent events are events such that probability of occurrence of one of them does not affect the occurrence of the other.
Independent events A and B satisfy the relation as follows:
\[P(A \cap B) = P(A).P(B){\text{ }}..........{\text{(1)}}\]
From the figure, we can observe that the sum of probability of occurrence of the event A and probability of occurrence of event B is equal to the sum of probability of occurrence of both event A and B and probability of occurrence of event A or event B.
\[P(A) + P(B) = P(A \cap B) + P(A \cup B){\text{ }}..........{\text{(2)}}\]
The probabilities of A, B and \[A \cup B\] are given as follows:
\[P(A) = \dfrac{1}{4}\]
\[P(B) = \dfrac{1}{3}\]
\[P(A \cup B) = \dfrac{1}{2}\]
Substituting these in equation (2), we get:
\[\dfrac{1}{4} + \dfrac{1}{3} = P(A \cap B) + \dfrac{1}{2}{\text{ }}\]
Simplifying the left-hand side, we get:
\[\dfrac{{3 + 4}}{{12}} = P(A \cap B) + \dfrac{1}{2}\]
\[\dfrac{7}{{12}} = P(A \cap B) + \dfrac{1}{2}\]
Now, solving for \[P(A \cap B)\] , we get:
\[P(A \cap B) = \dfrac{7}{{12}} - \dfrac{1}{2}\]
Simplifying the right-hand side of the equation, we get:
\[P(A \cap B) = \dfrac{{7 - 6}}{{12}}\]
\[P(A \cap B) = \dfrac{1}{{12}}{\text{ }}..........{\text{(3)}}\]
Hence, we obtained the value of \[P(A \cap B)\] .
Next, we compute the value of the product of probability of A and B.
We have:
\[P(A).P(B) = \dfrac{1}{4}.\dfrac{1}{3}\]
Multiplying the right-hand side of the equation, we have:
\[P(A).P(B) = \dfrac{1}{{12}}{\text{ }}...........{\text{(4)}}\]
From, equation (3) and equation (4), we observe that both the RHS are equal, hence LHS also are equal, we have:
\[P(A).P(B) = P(A \cap B)\]
This is nothing but equation (1), satisfying the condition for independent events.
Hence, we showed that A and B are independent events.
Note: A common mistake you can make is taking \[P(A) + P(B) = 1 = P(A \cup B) + P(A \cap B)\] and proceeding to solve for \[P(A \cap B)\] , which is wrong. You can observe that \[P(A) + P(B) = \dfrac{1}{4} + \dfrac{1}{3} = \dfrac{7}{{12}} \ne 1\] . However, \[P(A) + P(B) = P(A \cup B) + P(A \cap B)\] , always holds true.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE