Answer
Verified
441.3k+ views
Hint: In this question, we need to show that $\left( {{a}^{2}}-{{b}^{2}} \right)$ is composite if a and b are odd prime. For this we just need to show that $\left( {{a}^{2}}-{{b}^{2}} \right)$ has factors which are not equal to 1 or itself. We will first write a and b in the form of odd numbers which are prime. Then we will use them in $\left( {{a}^{2}}-{{b}^{2}} \right)$ to prove that it has factors other than 1. We will use the property that ${{x}^{2}}-{{y}^{2}}=\left( x+y \right)\left( x-y \right)$.
Complete step-by-step solution:
Here a and b are two odd prime and we need to prove $\left( {{a}^{2}}-{{b}^{2}} \right)$ as composite. Thus we need to prove that $\left( {{a}^{2}}-{{b}^{2}} \right)$ has factors other than 1 or itself. As we know from the algebraic property that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$. So (a+b) and (a-b) are the factors of $\left( {{a}^{2}}-{{b}^{2}} \right)$. But we need to prove that these are not equal to 1. For this let us use general notation to write any odd prime.
a is an odd prime, so it can be written as a = 2k+1. Similarly, b is also an odd prime. So it can also be written as b = 2k'+1 where k, k' are integers.
Now (a-b) will become,
$\left( a-b \right)=2k+1-\left( 2k'+1 \right)\Rightarrow 2k+1-2k'-1\Rightarrow 2k-2k'$.
Taking 2 common from both the terms we get, $\left( a-b \right)=2k-2k'$ which is an even number, so it cannot be equal to 1. (1 is not an even number).
Now let us find the value of (a+b) we get,
$\left( a+b \right)=2k+1+2k'+1$.
Simplifying it we get, $\left( a+b \right)=2k+2k'+2$.
Taking 2 common from all the terms on the right side we get $\left( a+b \right)=2\left( k+k'+1 \right)$ which is an even number. Hence it cannot be equal to 1.
Therefore, none of the factors of $\left( {{a}^{2}}-{{b}^{2}} \right)$ are equal to 1 and as we can say they are neither equal to $\left( {{a}^{2}}-{{b}^{2}} \right)$. So $\left( {{a}^{2}}-{{b}^{2}} \right)$ has two factors. Therefore it cannot be prime.
Hence $\left( {{a}^{2}}-{{b}^{2}} \right)$ is composite even if a and b are both odd primes.
Note: Students should know the mathematical way to represent an odd integer i.e. 2k+1 where k is an integer. If a number can be divided by 2 then it is an even number. Here both (a+b) and (a-b) have 2 as their factor, so they can be divided by 2 easily and hence they are even numbers.
Complete step-by-step solution:
Here a and b are two odd prime and we need to prove $\left( {{a}^{2}}-{{b}^{2}} \right)$ as composite. Thus we need to prove that $\left( {{a}^{2}}-{{b}^{2}} \right)$ has factors other than 1 or itself. As we know from the algebraic property that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a+b \right)\left( a-b \right)$. So (a+b) and (a-b) are the factors of $\left( {{a}^{2}}-{{b}^{2}} \right)$. But we need to prove that these are not equal to 1. For this let us use general notation to write any odd prime.
a is an odd prime, so it can be written as a = 2k+1. Similarly, b is also an odd prime. So it can also be written as b = 2k'+1 where k, k' are integers.
Now (a-b) will become,
$\left( a-b \right)=2k+1-\left( 2k'+1 \right)\Rightarrow 2k+1-2k'-1\Rightarrow 2k-2k'$.
Taking 2 common from both the terms we get, $\left( a-b \right)=2k-2k'$ which is an even number, so it cannot be equal to 1. (1 is not an even number).
Now let us find the value of (a+b) we get,
$\left( a+b \right)=2k+1+2k'+1$.
Simplifying it we get, $\left( a+b \right)=2k+2k'+2$.
Taking 2 common from all the terms on the right side we get $\left( a+b \right)=2\left( k+k'+1 \right)$ which is an even number. Hence it cannot be equal to 1.
Therefore, none of the factors of $\left( {{a}^{2}}-{{b}^{2}} \right)$ are equal to 1 and as we can say they are neither equal to $\left( {{a}^{2}}-{{b}^{2}} \right)$. So $\left( {{a}^{2}}-{{b}^{2}} \right)$ has two factors. Therefore it cannot be prime.
Hence $\left( {{a}^{2}}-{{b}^{2}} \right)$ is composite even if a and b are both odd primes.
Note: Students should know the mathematical way to represent an odd integer i.e. 2k+1 where k is an integer. If a number can be divided by 2 then it is an even number. Here both (a+b) and (a-b) have 2 as their factor, so they can be divided by 2 easily and hence they are even numbers.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE