![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
If a and b are unit vectors inclined at an angle \[\alpha ,\alpha \in \left[ {0,\pi } \right]\] to each other and $\left| {a + b} \right| < 1$ . Then $\alpha $ belongs to
(a) $\left( {\dfrac{\pi }{3},\dfrac{{2\pi }}{3}} \right)$
(b) $\left( {\dfrac{{2\pi }}{3},\pi } \right)$
(c) $\left( {0,\dfrac{\pi }{3}} \right)$
(d) $\left( {\dfrac{\pi }{4},\dfrac{{3\pi }}{4}} \right)$
Answer
486.6k+ views
Hint: For this question we have to know that the $\left| {a + b} \right| = \sqrt {{{\left| a \right|}^2} + {{\left| b \right|}^2} + 2\left| a \right|\left| b \right|\cos \alpha } $ on squaring on both side we get ${\left| {a + b} \right|^2} = {\left| a \right|^2} + {\left| b \right|^2} + 2\left| a \right|\left| b \right|\cos \alpha $ and use of $\left| a \right| = 1$ , $\left| b \right| = 1$ and $\left| {a + b} \right| < 1$ we will find the range of the $\alpha $.
Complete step-by-step answer:
It is given that in the question that $\left| {a + b} \right| < 1$ and if we square on both side we get ;
${\left| {a + b} \right|^2} < 1$
Now we know that from the vectors property $\left| {a + b} \right| = \sqrt {{{\left| a \right|}^2} + {{\left| b \right|}^2} + 2\left| a \right|\left| b \right|\cos \alpha } $
Where $a$ and $b$ are the unit vectors and $\alpha $ is the angle between them .
Now that the for the unit vectors $\left| a \right| = 1$ , $\left| b \right| = 1$
On Squaring the above equation became : ${\left| {a + b} \right|^2} = {\left| a \right|^2} + {\left| b \right|^2} + 2\left| a \right|\left| b \right|\cos \alpha $
Put the values $\left| a \right| = 1$ $\left| b \right| = 1$
${\left| {a + b} \right|^2} = {1^2} + {1^2} + 2\cos \alpha $
From above it is proved that
${\left| {a + b} \right|^2} < 1$
$\left| {a + b} \right| < 1$
hence ${\left| {a + b} \right|^2} = {1^2} + {1^2} + 2\cos \alpha $
$2 + 2\cos \alpha < 1$
$2\cos \alpha < - 1$
$\cos \alpha < - \dfrac{1}{2}$
Hence the
$\alpha \in \left[ {\dfrac{{2\pi }}{3},\pi } \right]$
It is given that the
\[\alpha \in \left[ {0,\pi } \right]\]
Now we know that the cosine is negative in the second quadrant and by taking the intersection from the given value we will find out that $\alpha \in \left[ {\dfrac{{2\pi }}{3},\pi } \right]$
So, the correct answer is “Option B”.
Note: Always be careful on solving the trigonometric inequalities . If you have any problem in solving it then try to make the graph of the given trigonometric function . So it will become easier to solve .
The dot product tells you what amount of one vector goes in the direction of another .
Dot product of the perpendicular vector is always zero .
Cross product always gives the vector which is perpendicular to the both vectors and its direction would be determined by Right hand rule.
Complete step-by-step answer:
It is given that in the question that $\left| {a + b} \right| < 1$ and if we square on both side we get ;
${\left| {a + b} \right|^2} < 1$
Now we know that from the vectors property $\left| {a + b} \right| = \sqrt {{{\left| a \right|}^2} + {{\left| b \right|}^2} + 2\left| a \right|\left| b \right|\cos \alpha } $
Where $a$ and $b$ are the unit vectors and $\alpha $ is the angle between them .
Now that the for the unit vectors $\left| a \right| = 1$ , $\left| b \right| = 1$
On Squaring the above equation became : ${\left| {a + b} \right|^2} = {\left| a \right|^2} + {\left| b \right|^2} + 2\left| a \right|\left| b \right|\cos \alpha $
Put the values $\left| a \right| = 1$ $\left| b \right| = 1$
${\left| {a + b} \right|^2} = {1^2} + {1^2} + 2\cos \alpha $
From above it is proved that
${\left| {a + b} \right|^2} < 1$
$\left| {a + b} \right| < 1$
hence ${\left| {a + b} \right|^2} = {1^2} + {1^2} + 2\cos \alpha $
$2 + 2\cos \alpha < 1$
$2\cos \alpha < - 1$
$\cos \alpha < - \dfrac{1}{2}$
Hence the
$\alpha \in \left[ {\dfrac{{2\pi }}{3},\pi } \right]$
It is given that the
\[\alpha \in \left[ {0,\pi } \right]\]
Now we know that the cosine is negative in the second quadrant and by taking the intersection from the given value we will find out that $\alpha \in \left[ {\dfrac{{2\pi }}{3},\pi } \right]$
So, the correct answer is “Option B”.
Note: Always be careful on solving the trigonometric inequalities . If you have any problem in solving it then try to make the graph of the given trigonometric function . So it will become easier to solve .
The dot product tells you what amount of one vector goes in the direction of another .
Dot product of the perpendicular vector is always zero .
Cross product always gives the vector which is perpendicular to the both vectors and its direction would be determined by Right hand rule.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Business Studies: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
With reference to graphite and diamond which of the class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State the laws of reflection of light
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)