
If a \[a{{\sin }^{2}}\alpha +b{{\cos }^{2}}\alpha =p,b{{\sin }^{2}}\beta +a{{\cos }^{2}}\beta =q,a\tan \alpha =b\tan \beta \], Show that \[\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{p}+\dfrac{1}{q}\], where \[a\ne p\] and all of them are non-zero.
Answer
621k+ views
Hint: Given three equations,divide First equation by \[{{\cos }^{2}}\alpha \] and second equation by \[{{\cos }^{2}}\beta \].Then substitute the values in third equation and simplify it.
“Complete step-by-step answer:”
Given that \[a{{\sin }^{2}}\alpha +b{{\cos }^{2}}\alpha =p-(1)\]
Now, divide both sides by \[{{\cos }^{2}}\alpha \].
\[\dfrac{a{{\sin }^{2}}\alpha +b{{\cos }^{2}}\alpha }{{{\cos }^{2}}\alpha }=\dfrac{p}{{{\cos }^{2}}\alpha }\]
\[\because \]We know that \[\dfrac{\sin \alpha }{\cos \alpha }=\tan \alpha \]
\[\dfrac{1}{\cos \alpha }=\sec \alpha \]
\[\begin{align}
& a{{\tan }^{2}}\alpha +b=p{{\sec }^{2}}\alpha \\
& \because {{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \\
& \Rightarrow a{{\tan }^{2}}\alpha +b=p\left( 1+{{\tan }^{2}}\alpha \right) \\
& a{{\tan }^{2}}\alpha +b=p+p{{\tan }^{2}}\alpha \\
& a{{\tan }^{2}}\alpha -p{{\tan }^{2}}\alpha =p-b \\
& {{\tan }^{2}}\alpha \left( a-p \right)=p-b \\
& \Rightarrow {{\tan }^{2}}\alpha =\dfrac{p-b}{a-p}-\left( 2 \right) \\
\end{align}\]
Given that \[b{{\sin }^{2}}\beta +a{{\cos }^{2}}\beta =q-(3)\]
Now, divide both sides by\[{{\cos }^{2}}\beta \].
\[\begin{align}
& \dfrac{b{{\sin }^{2}}\beta +a{{\cos }^{2}}\beta }{{{\cos }^{2}}\beta }=\dfrac{q}{{{\cos }^{2}}\beta } \\
& b{{\tan }^{2}}\beta +a=q{{\sec }^{2}}\beta \\
& b{{\tan }^{2}}\beta +a=q\left( 1+{{\tan }^{2}}\beta \right) \\
& b{{\tan }^{2}}\beta +a=q+q{{\tan }^{2}}\beta \\
& b{{\tan }^{2}}\beta -q{{\tan }^{2}}\beta =q-a \\
& {{\tan }^{2}}\beta \left( b-q \right)=q-a \\
& \therefore {{\tan }^{2}}\beta =\dfrac{q-a}{b-q}-(4) \\
\end{align}\]
From the question, \[a\tan \alpha =b\tan \beta \].
Squaring on both sides we get,
\[\begin{align}
& {{\left( a\tan \alpha \right)}^{2}}={{\left( b\tan \beta \right)}^{2}} \\
& {{a}^{2}}{{\tan }^{2}}\alpha ={{b}^{2}}{{\tan }^{2}}\beta \\
& \Rightarrow \dfrac{{{\tan }^{2}}\alpha }{{{\tan }^{2}}\beta }=\dfrac{{{b}^{2}}}{{{a}^{2}}}-\left( 5 \right) \\
\end{align}\]
From (3) and (4) substitute the values of (3) and (4) in (5).
\[\begin{align}
& \dfrac{\dfrac{\left( p-b \right)}{\left( a-p \right)}}{\dfrac{\left( q-a \right)}{\left( b-q \right)}}=\dfrac{{{b}^{2}}}{{{a}^{2}}} \\
& \Rightarrow \dfrac{\left( p-b \right)\left( b-q \right)}{\left( a-p \right)\left( q-a \right)}=\dfrac{{{b}^{2}}}{{{a}^{2}}} \\
& {{a}^{2}}\left[ \left( p-b \right)\left( b-q \right) \right]={{b}^{2}}\left[ \left( a-p \right)\left( q-a \right) \right] \\
\end{align}\]
Opening the brackets and simplifying it,
\[\begin{align}
& {{a}^{2}}\left[ pb-pq-{{b}^{2}}+bq \right]={{b}^{2}}\left[ aq-{{a}^{2}}-pq+ap \right] \\
& \Rightarrow {{a}^{2}}pb-{{a}^{2}}pq-{{a}^{2}}{{b}^{2}}+{{a}^{2}}bq=a{{b}^{2}}q-{{a}^{2}}{{b}^{2}}-{{b}^{2}}pq+a{{b}^{2}}q \\
\end{align}\]
Cancel out \[{{a}^{2}}{{b}^{2}}\] on both sides.
\[\begin{align}
& {{a}^{2}}pb-{{a}^{2}}pq+{{a}^{2}}bq-a{{b}^{2}}q+{{b}^{2}}pq-a{{b}^{2}}p=0 \\
& \left( {{a}^{2}}pb-a{{b}^{2}}p \right)-\left( {{a}^{2}}pq-{{b}^{2}}pq \right)+q\left( {{a}^{2}}b-a{{b}^{2}} \right)=0 \\
& \Rightarrow abp\left( a-b \right)-pq\left( {{a}^{2}}-{{b}^{2}} \right)+abq\left( a-b \right)=0 \\
\end{align}\]
We know, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& \Rightarrow abp-pq\left( a+b \right)+abq=0 \\
& abp+abq=pq\left( a+b \right) \\
& ab\left( p+q \right)=pq\left( a+b \right) \\
& \Rightarrow \dfrac{p+q}{pq}=\dfrac{a+b}{ab} \\
\end{align}\]
\[\Rightarrow \]By dividing and simplifying it,
\[\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{q}+\dfrac{1}{b}\]
Hence, proved.
Note: From \[a\tan \alpha =b\tan \beta \], solve them to find \[\dfrac{{{\tan }^{2}}\alpha }{{{\tan }^{2}}\beta }\]. By substituting the expression we get \[\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{q}+\dfrac{1}{b}\].
“Complete step-by-step answer:”
Given that \[a{{\sin }^{2}}\alpha +b{{\cos }^{2}}\alpha =p-(1)\]
Now, divide both sides by \[{{\cos }^{2}}\alpha \].
\[\dfrac{a{{\sin }^{2}}\alpha +b{{\cos }^{2}}\alpha }{{{\cos }^{2}}\alpha }=\dfrac{p}{{{\cos }^{2}}\alpha }\]
\[\because \]We know that \[\dfrac{\sin \alpha }{\cos \alpha }=\tan \alpha \]
\[\dfrac{1}{\cos \alpha }=\sec \alpha \]
\[\begin{align}
& a{{\tan }^{2}}\alpha +b=p{{\sec }^{2}}\alpha \\
& \because {{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha \\
& \Rightarrow a{{\tan }^{2}}\alpha +b=p\left( 1+{{\tan }^{2}}\alpha \right) \\
& a{{\tan }^{2}}\alpha +b=p+p{{\tan }^{2}}\alpha \\
& a{{\tan }^{2}}\alpha -p{{\tan }^{2}}\alpha =p-b \\
& {{\tan }^{2}}\alpha \left( a-p \right)=p-b \\
& \Rightarrow {{\tan }^{2}}\alpha =\dfrac{p-b}{a-p}-\left( 2 \right) \\
\end{align}\]
Given that \[b{{\sin }^{2}}\beta +a{{\cos }^{2}}\beta =q-(3)\]
Now, divide both sides by\[{{\cos }^{2}}\beta \].
\[\begin{align}
& \dfrac{b{{\sin }^{2}}\beta +a{{\cos }^{2}}\beta }{{{\cos }^{2}}\beta }=\dfrac{q}{{{\cos }^{2}}\beta } \\
& b{{\tan }^{2}}\beta +a=q{{\sec }^{2}}\beta \\
& b{{\tan }^{2}}\beta +a=q\left( 1+{{\tan }^{2}}\beta \right) \\
& b{{\tan }^{2}}\beta +a=q+q{{\tan }^{2}}\beta \\
& b{{\tan }^{2}}\beta -q{{\tan }^{2}}\beta =q-a \\
& {{\tan }^{2}}\beta \left( b-q \right)=q-a \\
& \therefore {{\tan }^{2}}\beta =\dfrac{q-a}{b-q}-(4) \\
\end{align}\]
From the question, \[a\tan \alpha =b\tan \beta \].
Squaring on both sides we get,
\[\begin{align}
& {{\left( a\tan \alpha \right)}^{2}}={{\left( b\tan \beta \right)}^{2}} \\
& {{a}^{2}}{{\tan }^{2}}\alpha ={{b}^{2}}{{\tan }^{2}}\beta \\
& \Rightarrow \dfrac{{{\tan }^{2}}\alpha }{{{\tan }^{2}}\beta }=\dfrac{{{b}^{2}}}{{{a}^{2}}}-\left( 5 \right) \\
\end{align}\]
From (3) and (4) substitute the values of (3) and (4) in (5).
\[\begin{align}
& \dfrac{\dfrac{\left( p-b \right)}{\left( a-p \right)}}{\dfrac{\left( q-a \right)}{\left( b-q \right)}}=\dfrac{{{b}^{2}}}{{{a}^{2}}} \\
& \Rightarrow \dfrac{\left( p-b \right)\left( b-q \right)}{\left( a-p \right)\left( q-a \right)}=\dfrac{{{b}^{2}}}{{{a}^{2}}} \\
& {{a}^{2}}\left[ \left( p-b \right)\left( b-q \right) \right]={{b}^{2}}\left[ \left( a-p \right)\left( q-a \right) \right] \\
\end{align}\]
Opening the brackets and simplifying it,
\[\begin{align}
& {{a}^{2}}\left[ pb-pq-{{b}^{2}}+bq \right]={{b}^{2}}\left[ aq-{{a}^{2}}-pq+ap \right] \\
& \Rightarrow {{a}^{2}}pb-{{a}^{2}}pq-{{a}^{2}}{{b}^{2}}+{{a}^{2}}bq=a{{b}^{2}}q-{{a}^{2}}{{b}^{2}}-{{b}^{2}}pq+a{{b}^{2}}q \\
\end{align}\]
Cancel out \[{{a}^{2}}{{b}^{2}}\] on both sides.
\[\begin{align}
& {{a}^{2}}pb-{{a}^{2}}pq+{{a}^{2}}bq-a{{b}^{2}}q+{{b}^{2}}pq-a{{b}^{2}}p=0 \\
& \left( {{a}^{2}}pb-a{{b}^{2}}p \right)-\left( {{a}^{2}}pq-{{b}^{2}}pq \right)+q\left( {{a}^{2}}b-a{{b}^{2}} \right)=0 \\
& \Rightarrow abp\left( a-b \right)-pq\left( {{a}^{2}}-{{b}^{2}} \right)+abq\left( a-b \right)=0 \\
\end{align}\]
We know, \[{{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)\]
\[\begin{align}
& \Rightarrow abp-pq\left( a+b \right)+abq=0 \\
& abp+abq=pq\left( a+b \right) \\
& ab\left( p+q \right)=pq\left( a+b \right) \\
& \Rightarrow \dfrac{p+q}{pq}=\dfrac{a+b}{ab} \\
\end{align}\]
\[\Rightarrow \]By dividing and simplifying it,
\[\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{q}+\dfrac{1}{b}\]
Hence, proved.
Note: From \[a\tan \alpha =b\tan \beta \], solve them to find \[\dfrac{{{\tan }^{2}}\alpha }{{{\tan }^{2}}\beta }\]. By substituting the expression we get \[\dfrac{1}{p}+\dfrac{1}{q}=\dfrac{1}{q}+\dfrac{1}{b}\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

