Answer
Verified
383.7k+ views
Hint:For a relation between a, b, c using the formula of arithmetic mean given as $2b=a+c$. For the terms b, c, d in GP use the formula of geometric mean given as ${{d}^{2}}=ce$. For the terms c, d, e in HP use the formula of harmonic mean given as $\dfrac{2}{d}=\dfrac{1}{c}+\dfrac{1}{e}$ to form the relation. Eliminate the terms b and d from the three relations and check which mean formula does the terms a, c, e satisfy to get the answer.
Complete step-by-step solution:
Here we have been given that a, b, c are in AP, b, c, d are in GP and c, d, e are in HP. We are asked to find the sequence relation between the terms a, c, e.
Now, we know that the terms arithmetic mean of the three terms a, b, c in AP is given as twice the middle is equal to the sum of first and third term, so we have,
$\Rightarrow 2b=a+c$ …… (1)
The geometric mean of the three terms b, c, d in GP is given as the middle term is equal to the square root of the product of first and third term, so we have,
$\Rightarrow c=\sqrt{bd}$
On squaring both the sides we get,
$\Rightarrow {{c}^{2}}=bd$ …… (2)
We know that the if three terms c, d, e are in HP then their reciprocals $\dfrac{1}{c}$, $\dfrac{1}{d}$, $\dfrac{1}{e}$ respectively will be in AP, so using the formula of arithmetic mean that is known as the harmonic mean in this case we get,
$\Rightarrow \dfrac{2}{d}=\dfrac{1}{c}+\dfrac{1}{e}$ …… (3)
In relation (3) eliminating the term d using the relation (2) we can write,
$\begin{align}
& \Rightarrow \dfrac{2}{\left( \dfrac{{{c}^{2}}}{b} \right)}=\dfrac{1}{c}+\dfrac{1}{e} \\
& \Rightarrow \dfrac{2b}{{{c}^{2}}}=\dfrac{1}{c}+\dfrac{1}{e} \\
\end{align}$
Now, in the above relation eliminating the term b using relation (1) we get,
$\begin{align}
& \Rightarrow \dfrac{a+c}{{{c}^{2}}}=\dfrac{1}{c}+\dfrac{1}{e} \\
& \Rightarrow \dfrac{a}{{{c}^{2}}}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{e} \\
& \Rightarrow \dfrac{a}{{{c}^{2}}}=\dfrac{1}{e} \\
\end{align}$
By cross multiplication we get,
$\Rightarrow ae={{c}^{2}}$
Clearly we can see that the above relation denotes the geometric mean of the terms a, c, e in the given order. Therefore a, c, e are in GP.
Hence, option (c) is the correct answer.
Note:You must remember the formulas of the three means of different sequences to solve the above question. Do not try to remove any of the terms a, c, e from the given relations because we have to find the relation between these terms and not b or d. You can check the answer by simply assigning some small integral values to the terms a, b, c, d and e.
Complete step-by-step solution:
Here we have been given that a, b, c are in AP, b, c, d are in GP and c, d, e are in HP. We are asked to find the sequence relation between the terms a, c, e.
Now, we know that the terms arithmetic mean of the three terms a, b, c in AP is given as twice the middle is equal to the sum of first and third term, so we have,
$\Rightarrow 2b=a+c$ …… (1)
The geometric mean of the three terms b, c, d in GP is given as the middle term is equal to the square root of the product of first and third term, so we have,
$\Rightarrow c=\sqrt{bd}$
On squaring both the sides we get,
$\Rightarrow {{c}^{2}}=bd$ …… (2)
We know that the if three terms c, d, e are in HP then their reciprocals $\dfrac{1}{c}$, $\dfrac{1}{d}$, $\dfrac{1}{e}$ respectively will be in AP, so using the formula of arithmetic mean that is known as the harmonic mean in this case we get,
$\Rightarrow \dfrac{2}{d}=\dfrac{1}{c}+\dfrac{1}{e}$ …… (3)
In relation (3) eliminating the term d using the relation (2) we can write,
$\begin{align}
& \Rightarrow \dfrac{2}{\left( \dfrac{{{c}^{2}}}{b} \right)}=\dfrac{1}{c}+\dfrac{1}{e} \\
& \Rightarrow \dfrac{2b}{{{c}^{2}}}=\dfrac{1}{c}+\dfrac{1}{e} \\
\end{align}$
Now, in the above relation eliminating the term b using relation (1) we get,
$\begin{align}
& \Rightarrow \dfrac{a+c}{{{c}^{2}}}=\dfrac{1}{c}+\dfrac{1}{e} \\
& \Rightarrow \dfrac{a}{{{c}^{2}}}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{e} \\
& \Rightarrow \dfrac{a}{{{c}^{2}}}=\dfrac{1}{e} \\
\end{align}$
By cross multiplication we get,
$\Rightarrow ae={{c}^{2}}$
Clearly we can see that the above relation denotes the geometric mean of the terms a, c, e in the given order. Therefore a, c, e are in GP.
Hence, option (c) is the correct answer.
Note:You must remember the formulas of the three means of different sequences to solve the above question. Do not try to remove any of the terms a, c, e from the given relations because we have to find the relation between these terms and not b or d. You can check the answer by simply assigning some small integral values to the terms a, b, c, d and e.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE