Answer
Verified
429.3k+ views
Hint: For the question of this kind where a, b, c are in arithmetic progression then find the value of the a+ c.
In solving this question we must take the first term as a and the other terms as b, c as given in the question and proceed further calculation using the arithmetic progression property of common difference is the same and solve it.
Complete step by step answer:
Firstly, let us consider the first term as \[{{t}_{1}}=a\] and the next term as \[{{t}_{2}}=b\] and the next term that is the third term as \[{{t}_{3}}=c\].
Here by using the arithmetic progression property which is the common difference from the successive terms is the same that is if \[{{t}_{1}},{{t}_{2}},{{t}_{3}}\] are successive terms in arithmetic progression then we can write\[\Rightarrow {{t}_{2}}={{t}_{1}}+d\]and also \[\Rightarrow {{t}_{3}}={{t}_{1}}+2d\] which is d using that we must conclude that the second term and the third term can be rewritten as follows.
\[\Rightarrow {{t}_{1}}=a\]
From using the property above mentioned we can rewrite the value of b as follows.
\[\Rightarrow {{t}_{2}}=a+d=b\]
By taking the help of the property of arithmetic progression we can rewrite the value of c as follows.
\[\Rightarrow {{t}_{3}}=a+2d=c\]
After rewriting the values of the a, b, c which we got using the arithmetic progression property that is the common difference is the same for the successive terms we will add the values of a and c .
\[\Rightarrow a+c=a+\left( a+2d \right)\]
Taking common the values we got the equation will be reduced as follows.
\[\Rightarrow a+c=2\left( a+d \right)\]
Here we substitute the value of a+ d which is b. So the equation will be reduced as follows.
\[\Rightarrow a+c=2b\]
So the solution of the given question will be \[a+c=2b\].
Note: We must be very careful in doing the calculations and one must be knowing the concept of arithmetic progression and must use the basic property of common difference is same for successive terms.
Students must be very careful in taking the common difference for the next successive terms and must not forget and must not think that difference is the same for any terms.
In solving this question we must take the first term as a and the other terms as b, c as given in the question and proceed further calculation using the arithmetic progression property of common difference is the same and solve it.
Complete step by step answer:
Firstly, let us consider the first term as \[{{t}_{1}}=a\] and the next term as \[{{t}_{2}}=b\] and the next term that is the third term as \[{{t}_{3}}=c\].
Here by using the arithmetic progression property which is the common difference from the successive terms is the same that is if \[{{t}_{1}},{{t}_{2}},{{t}_{3}}\] are successive terms in arithmetic progression then we can write\[\Rightarrow {{t}_{2}}={{t}_{1}}+d\]and also \[\Rightarrow {{t}_{3}}={{t}_{1}}+2d\] which is d using that we must conclude that the second term and the third term can be rewritten as follows.
\[\Rightarrow {{t}_{1}}=a\]
From using the property above mentioned we can rewrite the value of b as follows.
\[\Rightarrow {{t}_{2}}=a+d=b\]
By taking the help of the property of arithmetic progression we can rewrite the value of c as follows.
\[\Rightarrow {{t}_{3}}=a+2d=c\]
After rewriting the values of the a, b, c which we got using the arithmetic progression property that is the common difference is the same for the successive terms we will add the values of a and c .
\[\Rightarrow a+c=a+\left( a+2d \right)\]
Taking common the values we got the equation will be reduced as follows.
\[\Rightarrow a+c=2\left( a+d \right)\]
Here we substitute the value of a+ d which is b. So the equation will be reduced as follows.
\[\Rightarrow a+c=2b\]
So the solution of the given question will be \[a+c=2b\].
Note: We must be very careful in doing the calculations and one must be knowing the concept of arithmetic progression and must use the basic property of common difference is same for successive terms.
Students must be very careful in taking the common difference for the next successive terms and must not forget and must not think that difference is the same for any terms.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE