Answer
Verified
497.1k+ views
Hint: Make the 3 equations into matrix form. It will become a 3 x 3 matrix. Now, find its determinant. If the matrix is taken as A, then determinant of A is $\left| A \right|=0$. Solve and get the answer.
Complete step-by-step answer:
A solution or example that is not trivial, if the solution is non-zero. Solution/examples that involve the number zero are considered as trivial.
For example the equation x + 5y = 0 has trivial solution (0, 0).
Now-trivial solutions include (5, -1) and (2, 0.4).
Consider the 3 equations
$\begin{align}
& \left( a-1 \right)x=y+z\Rightarrow \left( a-1 \right)x-y-z=0 \\
& \left( b-1 \right)y=z+x\Rightarrow -x+\left( b-1 \right)y-z=0 \\
& \left( c-1 \right)z=x+y\Rightarrow -x-y-\left( c-1 \right)z=0 \\
\end{align}$
These 3 equations can be considered in 3 x 3 matrix form
A 3 x 3 matrix is of the form \[\left[ \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right]\]
Similarly determinant is of form \[\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|\]
Let us consider $A=\left[ \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right]$
$\therefore \left| A \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right|\begin{matrix}
\to Row1\left( {{R}_{1}} \right) \\
\to Row2\left( {{R}_{2}} \right) \\
\to Row3\left( {{R}_{3}} \right) \\
\end{matrix}$
Do ${{R}_{3}}\to {{R}_{3}}\to {{R}_{2}}$
$\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
\left( -1+1 \right) & \left( -1-b+1 \right) & \left( c-1+1 \right) \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
0 & -b & c \\
\end{matrix} \right|$
Now do ${{R}_{2}}\to {{R}_{2}}\to {{R}_{1}}$
\[\left| \begin{matrix}
a-1 & -1 & -1 \\
\left( -1-a+1 \right) & \left( b-1+1 \right) & \left( -1+1 \right) \\
0 & -b & c \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-a & b & 0 \\
0 & -b & c \\
\end{matrix} \right|\]
We know that $\left| A \right|=0$
$\begin{align}
& \left| A \right|\Rightarrow \left( a-1 \right)\left[ bc \right]+1\left( -ac \right)-1\left( ab \right) \\
& =\left( a-1 \right)bc-ac-ab \\
& =abc-bc-ac-ab \\
& \left| A \right|=0 \\
& \Rightarrow abc-bc-ac-ab=0 \\
& \Rightarrow ab+bc+ac=abc \\
\end{align}$
Therefore, the correct answer is option C.
Note: Simplify the determinant A before equating it to zero or else the answer will become complex.One must be aware of the rows and columns operations which helps in simplifying the determinant.
Complete step-by-step answer:
A solution or example that is not trivial, if the solution is non-zero. Solution/examples that involve the number zero are considered as trivial.
For example the equation x + 5y = 0 has trivial solution (0, 0).
Now-trivial solutions include (5, -1) and (2, 0.4).
Consider the 3 equations
$\begin{align}
& \left( a-1 \right)x=y+z\Rightarrow \left( a-1 \right)x-y-z=0 \\
& \left( b-1 \right)y=z+x\Rightarrow -x+\left( b-1 \right)y-z=0 \\
& \left( c-1 \right)z=x+y\Rightarrow -x-y-\left( c-1 \right)z=0 \\
\end{align}$
These 3 equations can be considered in 3 x 3 matrix form
A 3 x 3 matrix is of the form \[\left[ \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right]\]
Similarly determinant is of form \[\left| \begin{matrix}
{{x}_{1}} & {{y}_{1}} & {{z}_{1}} \\
{{x}_{2}} & {{y}_{2}} & {{z}_{2}} \\
{{x}_{3}} & {{y}_{3}} & {{z}_{3}} \\
\end{matrix} \right|\]
Let us consider $A=\left[ \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right]$
$\therefore \left| A \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
-1 & -1 & c-1 \\
\end{matrix} \right|\begin{matrix}
\to Row1\left( {{R}_{1}} \right) \\
\to Row2\left( {{R}_{2}} \right) \\
\to Row3\left( {{R}_{3}} \right) \\
\end{matrix}$
Do ${{R}_{3}}\to {{R}_{3}}\to {{R}_{2}}$
$\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
\left( -1+1 \right) & \left( -1-b+1 \right) & \left( c-1+1 \right) \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-1 & b-1 & -1 \\
0 & -b & c \\
\end{matrix} \right|$
Now do ${{R}_{2}}\to {{R}_{2}}\to {{R}_{1}}$
\[\left| \begin{matrix}
a-1 & -1 & -1 \\
\left( -1-a+1 \right) & \left( b-1+1 \right) & \left( -1+1 \right) \\
0 & -b & c \\
\end{matrix} \right|=\left| \begin{matrix}
a-1 & -1 & -1 \\
-a & b & 0 \\
0 & -b & c \\
\end{matrix} \right|\]
We know that $\left| A \right|=0$
$\begin{align}
& \left| A \right|\Rightarrow \left( a-1 \right)\left[ bc \right]+1\left( -ac \right)-1\left( ab \right) \\
& =\left( a-1 \right)bc-ac-ab \\
& =abc-bc-ac-ab \\
& \left| A \right|=0 \\
& \Rightarrow abc-bc-ac-ab=0 \\
& \Rightarrow ab+bc+ac=abc \\
\end{align}$
Therefore, the correct answer is option C.
Note: Simplify the determinant A before equating it to zero or else the answer will become complex.One must be aware of the rows and columns operations which helps in simplifying the determinant.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE