Answer
Verified
460.8k+ views
Complete step-by-step solution
Figure:
Let us first draw a figure which represents the triangle and its angles A, B, and C, where \[\angle \] A is obtuse.
Since, we have been given that A is an obtuse angle, we will express it mathematically as,
\[\dfrac{\pi }{2} < A < \pi \] . . . . . . . . (1)
We know that A, B, C are angles of the same triangle. Therefore by the property Sum of angles of a triangle we get,
A+B+C = \[\pi \]
We need to get a range of values for B and C.
Angle A can be written as,
A = \[\pi - \left( {B + C} \right)\]
Let us substitute this in equation (1)
We get,
\[\dfrac{\pi }{2} < \pi - (B + C) < \pi \]
We want the angles B and C to be positive.
So we will multiply throughout the expression by” – “to keep the term (B+C) positive.
This will reverse the inequalities from “<” to “>”.
We get the following expression,
\[ - \dfrac{\pi }{2} > - \pi + (B + C) > - \pi \]
To simplify further we will add \[\pi \] throughout the expression. We get,
\[ \Rightarrow \dfrac{\pi }{2} > \left( {B + C} \right) > 0\]
Therefore, we now know that B+C is less than\[\dfrac{\pi }{2}\].
\[ \Rightarrow B + C < \dfrac{\pi }{2}\]
\[ \Rightarrow B < \dfrac{\pi }{2} - C\]
As we have to find the values of tanBtanC, we will apply tan on both sides of the inequality.
\[ \Rightarrow \tan (B) < \tan \left( {\dfrac{\pi }{2} - C} \right)\]
Using the trigonometric property, \[\tan \left( {\dfrac{\pi }{2} - \theta } \right) = \cot (\theta )\], we get
\[ \Rightarrow \tan B < \cot C\]
We also know that, \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. Therefore we get,
\[ \Rightarrow \tan B < \dfrac{1}{{\tan C}}\]
We will now bring the terms $\tan B$ and $\tan C$ on the same side.
\[\therefore \tan B\tan C < 1\]
Hence, for the above-given question tanBtanC will be less than 1.
The correct answer choice is (C).
Note: We should keep in mind the two properties given in the question so that we keep the solution simple. Also, we should avoid opening the bracket initially as we might get confused. Keep in mind to keep (B+C) positive. We should also remember to get rid of the \[\pi \] in the middle term by adding the expression with \[\pi \].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE